ON THE FLAT-FOLDABILITY OF A CREASE PATTERN

FLAVIA POMA

September 5, 2009

ABSTRACT. A crease pattern is the fingerprint that an origami leaves on the paper after being unfolded. A very natural question about the mathematics of origami is if it is possible to read on the crease pattern whether or not it belongs to a flat origami (i.e., an origami that has only 2 dimensions, if we do not consider the thickness of the paper). Necessary conditions for a crease pattern to fold flat have been given by T. Kawasaki [5] and T. Hull [2]. In this paper we give a criterion for flat-foldability of a crease pattern in the case the creases are "not too short" (Theorem 4).

1. INTRODUCTION

1.1. The flat-foldability problem. Let consider the square

$$Q = [0,1] \times [0,1] \subset \mathbb{R}^2.$$

Definition 1. A crease pattern is the data $\mathscr{C} = (\mathscr{V}, \mathscr{E})$, where

- (1) \mathscr{E} is a finite set of edges contained in Q,
- (2) \mathscr{V} is the set of all endpoints of edges in \mathscr{E} which are contained in $(0,1) \times (0,1)$,

subject to the conditions

- (1) if e and f are two elements of \mathscr{E} , then their intersection is either empty or a point of \mathscr{V} ,
- (2) every point in \mathscr{V} is the endpoint of an even number of edges in \mathscr{E} .

The last condition will be clear after we state Maekawa's Theorem (see Remark 3).

We call *vertices* the elements of \mathscr{V} and *creases* the elements of \mathscr{E} . The creases of a crease pattern \mathscr{C} divide the square Q in a finite number of polygons, that we call *faces*. We say that a crease e is *incident* to a vertex v if v is an endpoint of e; two vertices are *adjacent* if they are the endpoints of the same crease; two creases e and f are *adjacent* if they are incident to the same vertex; finally, we say that two creases are *consecutive* if they are incident to a vertex v and at least one of the two angles between them is not crossed by any other crease incident to v.

REMARK 1. If $\mathscr{C} = (\{v\}, \mathscr{E})$ is a one-vertex crease pattern, then we write

 $\mathscr{E} = \{e_1, \dots, e_{2n}\}$

and we mean that the creases are consecutive and ordinated counterclockwise. Moreover, we denote by $\alpha_1, \ldots, \alpha_{2n}$ the angles between the creases, so that α_i is the angle between e_i and e_{i+1} , for $i = 1, \ldots, 2n$ (where $e_{2n+1} = e_1$). **Definition 2.** Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern. A *folding map* for \mathscr{C} is a function

$$\varphi \colon \mathscr{E} \to \mathbb{Z}/2\mathbb{Z}.$$

We denote by $\eta_0(\varphi)$ and $\eta_1(\varphi)$ respectively the number of creases of \mathscr{C} mapped to 0 by φ and the number of creases mapped to 1.

A folding map tells us how to fold each crease: we fix an orientation of the square Q (i.e., we view Q embedded in \mathbb{R}^3 and lying in the plane $\{z = 0\}$, where x, y, z are the coordinates of \mathbb{R}^3), now if $\varphi(e) = 0$ then e is a valley crease, otherwise e is a mountain crease.

FIGURE 1. Mountain and valley creases.

Definition 3. Let φ be a folding map for a crease pattern \mathscr{C} . An *injective* deformation of \mathscr{C} with respect to φ is a continuous map

$$\Phi \colon Q \times [0,1] \to \mathbb{R}^3$$

such that

- (1) $\Phi(q,0) = q$, for all $q \in Q$,
- (2) for all $t \in [0, 1]$, the image of $\Phi(-, t)$ does not contain transversal self-intersections;
- (3) $\Phi(-,t)$ is an isometry on each face of \mathscr{C} , for all $t \in [0,1]$,
- (4) $\Phi(-,t)$ preserves the orientation, for all $t \in [0,1]$,
- (5) if F_1 and F_2 are two adjacent faces and $e \in \mathscr{E}$ is a common crease, then

$$0 + \varphi(e)\pi \le \beta(t) \le \pi + \varphi(e)\pi,$$

for all $t \in [0, 1]$, where $\beta(t)$ is the angle between $\Phi(F_1, t)$ and $\Phi(F_2, t)$.

The angle $\beta(t)$ is well-defined once we fixed an embedding of the square Q in \mathbb{R}^3 . We think at an injective deformation as an invisible origamist folding the square Q, following the given crease pattern; so $\Phi(Q, t)$ is a shot of the origami at the istant $t \in [0, 1]$. The condition on the transversal self-intersections formalizes the fact that the paper cannot intersect itself.

Definition 4. Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern. A folding map φ for \mathscr{C} is a *flat-folding map* if there exists an injective deformation Φ of φ such that

$$\Phi(Q,1) \subset H$$

for some plane $H \subset \mathbb{R}^3$. In this case we also say that φ folds flat.

REMARK 2. If φ is a flat-folding map, then also $1 - \varphi$ folds flat, where

$$(1 - \varphi)(e) = 1 - \varphi(e)$$

In fact, if Φ is an injective deformation of φ , then $\Phi \circ R_{\pi}$ is an injective deformation of $1 - \varphi$, where R_{π} is the rotation of angle π .

Definition 5. A crease pattern $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ is *flat-foldable* if there exists a flat-folding map φ for \mathscr{C} .

1.2. One-vertex crease patterns. The flat-foldability problem is completely understood in the case there is only one vertex ([4], [5]).

Theorem 1 (Maekawa). Let $\mathscr{C} = (\{v\}, \mathscr{E})$ be a one-vertex crease pattern. If φ is a flat-folding map for \mathscr{C} , then

(1)
$$\eta_0(\varphi) - \eta_1(\varphi) = \pm 2.$$

Theorem 2 (Kawasaki). Let $\mathscr{C} = (\{v\}, \{e_1, \ldots, e_{2n}\})$ be a one-vertex crease pattern. Then \mathscr{C} is flat-foldable if and only if

(2)
$$\alpha_1 - \alpha_2 + \dots + \alpha_{2n-1} - \alpha_{2n} = 0.$$

If v is a vertex of a crease pattern \mathscr{C} , then we will refer to equation (2) as to the *Kawasaki's condition* at v. Moreover if φ is a folding map for \mathscr{C} , then we will refer to equation (1) as to the *Maekawa's condition* at v. Notice that Kawasaki and Maekawa's conditions are still necessary in the case of a crease pattern with more vertices, but in general they are not sufficient (see examples in Section 2).

REMARK 3. Here the last condition of Definition 1 becomes clear. Indeed, Maekawa's Theorem does not need the assuption on the degree of each vertex, instead it implies that if \mathscr{C} is flat-foldable then \mathscr{E} contains an even number of creases. In fact, let r be the number of creases in \mathscr{E} , then

$$\eta_0(\varphi) + \eta_1(\varphi) = r;$$

moreover, by Maekawa's Theorem,

$$\eta_0(\varphi) - \eta_1(\varphi) = \pm 2,$$

hence $r = 2(\eta_0(\varphi) \mp 1)$.

1.3. From local to global flat-foldability. The case of a crease pattern with more than one vertex has been treated by T. Kawasaki ([5]), T. Hull ([2], [3]), M. Bern and B. Hayes ([1]).

Kawasaki firstly observed that local flat-foldability (i.e., Kawasaki's condition) does not imply global flat-foldability in general (Remark 4). Hull proposed to associate to a given crease pattern a graph in such a way that it is possible to check some properties of the crease pattern directly on the graph by looking if it is 2-vertex-colorable ([2]). This seems to be an interesting idea, because checking the 2-vertex-colorability of a graph is very easy. The hard part is to construct a graph so that flat-foldability can be completely verified on it.

In this paper we start investigating what kind of obstructions to global flat-foldability can occur. It comes out that there are two types of problems:

- (1) lenght-related obstructions, regarding the lenght of the creases (Example 4);
- (2) forced creases, regarding local conditions that force creases to fold in a certain way and which do not agree globally (Example 2 and Example 3).

We do not want to deal with the first type here, so we give just some ideas on a way to fix it. Instead we discuss the second type of obstructions, studing the conditions that force two creases to fold equal or different (Lemma 2 and Lemma 1).

FLAVIA POMA

Finally we characterize the folding maps which fold flat (Theorem 3) and use this to prove our main result on the flat-foldability of a crease pattern (Theorem 4).

Acknowledgments. I would like to thank Thomas Hull for careful reading. He pointed out some mistakes and his comments helped to improve the exposition.

2. Obstructions to global flat-folding

Since Kawasaki's condition is not sufficient in the general case, we look for additional conditions for flat-foldability. Therefore, we try to understand what kind of problems can occur.

REMARK 4 (Kawasaki [5]). If $(\{v\}, \{e_1, \ldots, e_{2n}\})$ is a one-vertex flat-foldable crease pattern and $\alpha_{i-1} > \alpha_i < \alpha_{i+1}$, then $\varphi(l_i) \neq \varphi(l_{i+1})$, for all flat-folding maps φ (that means that e_i and e_{i+1} cannot be both mountain neither valley folds).

Hull observed that, in the case of a multi-vertex crease pattern, the conditions given by Remark 4 give rise to non trivial global conditions as we see in the following example ([2]).

EXAMPLE 1 (Hull [2]). The crease pattern in Figure 2 can't fold flat, by Remark 4. In fact, if φ is a flat-folding map, then

$$\varphi(e_1) \neq \varphi(e_2) \neq \varphi(e_3) \neq \varphi(e_1),$$

but each crease has only two possible values, so we get an absurd.

FIGURE 2.

EXAMPLE 2. Consider the crease pattern in Figure 3. By Remark 4 and Maekawa's Theorem, if φ is a flat-folding map, then

$$\varphi(e_1) = \varphi(e_2) = \varphi(e_3) = \varphi(e_4) \neq \varphi(e_1),$$

hence this crease pattern is not flat-foldable.

FIGURE 3.

4

Example 2 suggests that in order to study flat-foldability for a crease pattern we have to take in consideration all the conditions that force a crease to fold in a fixed way.

EXAMPLE 3. Consider the crease pattern in Figure 4. By Remark 4 and Maekawa's Theorem applied at every vertex except v, we get that, if φ is a flat-folding map, then

$$\begin{aligned} \varphi(e_1) &= \varphi(e_2) = \varphi(e_3) = \varphi(e_4) = \varphi(e_5), \\ \varphi(f_1) &= \varphi(f_2) = \varphi(f_3) = \varphi(f_4) = \varphi(f_5). \end{aligned}$$

But this implies that Maekawa's condition at v cannot be satisfied.

FIGURE 4.

Hull provided also the following example, which shows that something is still missing.

EXAMPLE 4 (Hull [3]). The crease pattern in Figure 5 doesn't fold flat unless d becomes longer, hence this time the problem is lenght-related.

FIGURE 5.

We will see that, if we assume that Kawasaki's condition holds, then the only kinds of obstructions to flat-foldability that can occur are the ones sketched in Example 2, Example 3 and Example 4.

3. The non-collision condition

In this paper we do not want to deal with the kind of obstruction of Example 4, so we define a "non-collision" condition as follows. More explicitly, given a crease pattern $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ and a collection $\{\varphi_v | v \in \mathscr{V}\}$ of flat-folding maps that agree on the creases of \mathscr{C} (where every φ_v is defined on the creases incident at v), we want to find conditions that ensure that we can glue these maps together to get a global flat-folding map.

FLAVIA POMA

Let $(\{v, w\}, \mathscr{E}_v \cup \mathscr{E}_w \cup \{d\})$ be a crease pattern, with

$$\mathscr{E}_v = \{e_2, \dots, e_{2m}\}$$
$$\mathscr{E}_w = \{f_2, \dots, f_{2n}\},$$

where we mean that \mathscr{E}_v (respectively, \mathscr{E}_w) are creases incident at v (respectively, at w), and d is a crease incident at both v and w. Moreover let $\alpha_1, \ldots, \alpha_{2m}$ be the angles between the creases incident at v, and $\beta_1, \ldots, \beta_{2n}$ the angles between creases incident at w (Figure 6). We define

$$\sigma_i = \alpha_1 - \alpha_2 + \dots + \alpha_{2i-1} - \alpha_{2i}$$

$$\sigma^h = \alpha_1 - \alpha_2 + \dots + \alpha_{2h-1},$$

where $1 \le i \le m - 1$ and $1 \le h \le m$. Similarly, we define

$$\tau_i = \beta_1 - \beta_2 + \dots + \beta_{2i-1} - \beta_{2i}$$

$$\tau^h = \beta_1 - \beta_2 + \dots + \beta_{2h-1},$$

where $1 \le i \le n-1$ and $1 \le h \le n$. If e is a crease, we denote by l(e) the length of e.

FIGURE 6.

Definition 6. We say that v and w satisfy the non-collision condition if

(1) there exists $1 \le j \le n$ such that, for all $1 \le i \le m - 1$,

 $(l(d) - l(e_{2i+1})\cos\sigma_i)\tan\tau^j \ge l(e_{2i+1})\sin\sigma_i;$

(2) there exists $1 \le i \le m$ such that, for all $1 \le j \le n-1$,

$$(l(d) - l(f_{2j+1})\cos\tau_j)\tan\sigma^i \ge l(f_{2j+1})\sin\tau_j.$$

REMARK 5. Assume that Kawasaki's condition holds at v and w. Then we can fold the creases incident at v and w separately, that means that there exist two flat-folding maps φ_v and φ_w . We can assume that $\varphi_v(d) = \varphi_w(d)$ (otherwise, we consider $1 - \varphi_w$ instead of φ_w). The non-collision condition assures that the folding map obtained by gluing φ_v and φ_w folds flat. More explicitly, the first condition of Definition 6 implies that, gluing φ_v and φ_w , we can put all the creases in \mathscr{E}_v inside the crease f_j without ripping the paper.

Definition 7. We say that a crease pattern \mathscr{C} satisfies the *non-collision* condition if every couple of adjacent vertices does.

 $\mathbf{6}$

REMARK 6. Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern that satisfies the noncollision condition. Let $\{\varphi_v | v \in \mathscr{V}\}$ be a collection of flat-folding maps that agree on the creases of \mathscr{C} (where every φ_v is defined on the creases incident at v). Then it follows by Remark 5, using an inductive argument, that we can glue them together to get a flat-folding map φ for \mathscr{C} .

In the following we assume that all crease patterns satisfy the non-collision condition.

REMARK 7. Notice that Definition 6 is too strict for our aim. For example, in the case of a crease pattern with only two vertices, it is enough to require that at least one of the two conditions of Definition 6 holds in order to ensure that local flat-folding maps which agree can be glued together to give a global flat-folding map. So, assuming that the non-collision condition holds, we are throwing away some flat-foldable crease patterns. In order to be accurate, one should require in Definition 6 that, given a crease pattern \mathscr{C} , at least one condition holds, then one derives an oriented graph associated to \mathscr{C} and finally one has to look at the conditions on this graph that imply the flat-foldability. However, this is not our purpoise, so we put ourselves in the case the "strong" non-collision condition holds.

4. FLAT-FOLDABILITY OF TWO CONSECUTIVE CREASES

We want to characterize the crease patterns $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ for which there exists a collection $\{\varphi_v | v \in \mathscr{V}\}$ of flat-folding maps that agree on the creases of \mathscr{C} . Notice that the existence of a collection $\{\varphi_v | v \in \mathscr{V}\}$ of flat-folding maps is ensured by (actually equivalent to) requiring that Kawasaki's condition holds at every vertex (Theorem 2), hence the problem is to make them agree on \mathscr{E} .

We saw in Section 2 that sometimes the creases are "forced" to fold in a certain way, so now we want to give conditions for two consecutive creases to be forced to be equal or different.

Definition 8. We say that two creases e and f are forced to be equal (respectively, different) if for every flat-folding map φ , we have $\varphi(e) = \varphi(f)$ (respectively, $\varphi(e) \neq \varphi(f)$). Moreover, we say that a crease e is forced if for every vertex of e there exists at least one crease $f \neq e$ such that e and f are consecutive and forced to be equal or different.

The results of this section are quite technical, so we need some notations. Let $(\{v\}, \mathscr{E})$ be a flat-foldable crease pattern with $\mathscr{E} = \{e_1, \ldots, e_{2n}\}$. We define the following

$$\sigma_s = \alpha_2 - \alpha_3 + \dots + \alpha_{2s},$$

$$\sigma^s = \alpha_{2n} - \alpha_{2n-1} + \dots + \alpha_{2s+2s},$$

where $s \in \{1, ..., n - 1\}$, and

$$I = \{ 1 \le i \le n - 1 \, | \, \sigma_i > \alpha_1 \} J = \{ 1 \le j \le n - 1 \, | \, \sigma^j > \alpha_1 \}.$$

Notice that, by Kawasaki's condition, we have

$$\sigma_s = \alpha_1 - \alpha_{2n} + \dots + \alpha_{2s+1},$$

$$\sigma^s = \alpha_1 - \alpha_2 + \dots + \alpha_{2s+1}.$$

Lemma 1. The creases e_1 and e_2 are forced to be different if and only if there exist $1 \le i < j \le n-1$ such that $\sigma_i > \alpha_1 < \sigma^j$ and

(1) $\sigma_l < \alpha_1$, for all $j < l \le n-1$, (2) $\sigma^r < \alpha_1$, for all $1 \le r < i$.

Proof. Suppose that $\varphi(e_1) \neq \varphi(e_2)$, for all flat-folding maps φ . By contraddiction, if $\sigma_i \leq \alpha_1$ for every $1 \leq i \leq n-1$, then we define

$$\varphi(e_h) = \begin{cases} 1 & \text{if } h \equiv 0 \quad (2) \\ 1 & \text{if } h = 1 \\ 0 & \text{otherwise.} \end{cases}$$

In Figure 7 we see a transversal section of Q, being folded according to φ , at a certain instant.

FIGURE 7.

In particular, we can cut Q along e_1 and fold the creases e_2, \ldots, e_{2n} in such a way that the creases with even indices are mountain and those with odd indices are valley. After that, we see that we can glue along e_1 and we get a flat origami, since $\sigma_i \leq \alpha_1$ for all $1 \leq i \leq n-1$. It follows that φ folds flat. A similar argument holds if $\sigma^j \leq \alpha_1$ for all $1 \leq j \leq n-1$.

FIGURE 8.

Otherwise, if $i = \min I$, $j = \max J$ and there exists $j < l \le n-1$ such that $\sigma_l \ge \alpha_1$, then we can assume that l realizes the maximum of σ_s for $j < s \le n-1$. Moreover, let $1 \le r \le j$ be an index which realizes the maximum of σ^s for $1 \le s \le n-1$. We define

$$\varphi(e_h) = \begin{cases} 0 & \text{if } h = 2k, \, k = 1, \dots, r, r + 2, \dots, l \\ 0 & \text{if } h = 2k + 1, \, k = 0, l + 1, \dots, n - 1 \\ 1 & \text{otherwise.} \end{cases}$$

8

As before, we can cut along e_{2r+2} and fold the other creases according to φ (where 0 corresponds to valley folds and 1 corresponds to mountain folds), and we see that by assumptions we can glue along e_{2r+2} and get a flat origami (Figure 8). Again, a similar argument holds if $\sigma^r \geq \alpha_1$ for some $1 \leq r < i$.

FIGURE 9.

Assume now that the conditions of the statement hold (Figure 9). Note that the creases e_{2i} and e_{2j+2} cannot lie on the same side with respect to α_1 , because by hypothesis,

$$\sigma_i > \sigma_l$$
, for all $j < l \le n$,
 $\sigma^j > \sigma^r$, for all $0 \le r < i$,

and so we cannot put the crease e_{2i+1} inside any of the creases in the set $\{e_1, e_{2n}, \ldots, e_{2j+2}\}$, neither we can put the crease e_{2j+1} inside any of the creases in $\{e_1, e_2, \ldots, e_{2i}\}$. Then the creases e_{2i} and e_{2j+2} must lie on opposite sides with respect to α_1 , and the only way to make it happens is to fold e_1 and e_2 in different ways, since

$$\sigma_l < \alpha_1 > \sigma^r,$$

for all $j < l \le n - 1$ and $1 \le r < i$.

Lemma 2. The creases e_1 and e_2 are forced to be equal if and only if

$$\sigma_i < \alpha_1 > \sigma^j,$$

for all $1 \leq i, j \leq n-1$.

Proof. Assume that $\varphi(e_1) = \varphi(e_2)$, for every flat-folding map φ .

FIGURE 10.

By contraddiction, if there exists $1 \leq i \leq n-1$ such that $\sigma_i \geq \alpha_1$, then let $i \leq l \leq n-1$ be such that $\sigma_s \leq \sigma_l$, for all $l \leq s \leq n-1$. We define the

following folding map

$$\varphi(e_h) = \begin{cases} 1 & \text{if } h \equiv 0 \quad (2) \\ 1 & \text{if } h = 2l+1 \\ 0 & \text{otherwise,} \end{cases}$$

and we see easily that φ folds flat (Figure 10). In particular, we can cut along e_{2l+1} and fold the other creases according to φ . Then, by hypothesis, we can glue along e_{el+1} and get a flat origami. A similar argument holds if there exists $1 \leq j \leq n-1$ such that $\sigma^j \geq \alpha_1$.

FIGURE 11.

Suppose now that

$$\sigma_i < \alpha_1 > \sigma^j,$$

for all $1 \leq i, j \leq n-1$, and let φ be a folding map such that $\varphi(e_1) \neq \varphi(e_2)$. We cut along e_s for some $s \neq 1, 2$ and we fold according to φ . It follows from the hypothesis that the creases $\{e_3, \ldots, e_{s-1}\}$ and the creases $\{e_{s+1}, \ldots, e_{2n}\}$ lie on opposite sides with respect to α_1 , hence we cannot glue along e_s (Figure 11).

Since this is true for all $s \neq 1, 2$, we get that φ is not flat-foldable. \Box

Definition 9. We denote by $P_{\neq}(e_1, e_2)$ the conditions of Lemma 1. Similarly, we denote by $P_{=}(e_1, e_2)$ the conditions of Lemma 2.

Definition 10. With the notation as before, if $\alpha_1 \leq \alpha_h$ for all h, then we can consider the crease pattern

$$\mathscr{C}' = (\{v\}, \{e_3, \dots, e_{2n}\}),$$

where the angle between the creases e_{2n} and e_3 is $\alpha_{2n} - \alpha_1 + \alpha_2$. The crease pattern \mathscr{C}' is said to be *derived*. We can iterate this construction and get more derived crease patterns.

We think at \mathscr{C}' as if we folded the creases e_1 and e_2 in different ways and then we identified the layers of the folded square Q together.

REMARK 8. Note that \mathscr{C}' is not flat anymore; however, since we didn't use flatness hypothesis in the previous results, we can define the properties $P_{=}$ and P_{\neq} for the pair (e_{2n}, e_3) .

5. FLAT-FOLDING MAPS

Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern and let φ be a folding map for \mathscr{C} .

Definition 11. We say that \mathscr{C} and φ are *compatible* if the following two conditions hold for every pair of consecutive creases (e, f),

- (1) if $P_{=}(e, f)$ is satisfied then $\varphi(e) = \varphi(f)$,
- (2) if $P_{\neq}(e, f)$ is satisfied then $\varphi(e) \neq \varphi(f)$.

REMARK 9. It follows from Lemma 1 and Lemma 2 that if φ folds flat then \mathscr{C} and φ are compatible.

Definition 12. Let $v \in \mathscr{V}$ be a vertex and let $\alpha_1 \leq \alpha_h$ for all h, where $\{\alpha_h | h = 1, ..., 2n\}$ are the angles between the creases $\{e_h | h = 1, ..., 2n\}$ incident at v. If $\varphi(e_1) \neq \varphi(e_2)$, then we can define a crease pattern

$$\mathscr{C}' = (\mathscr{V}, \mathscr{E} \setminus \{e_1, e_2\}),$$

where the angle between e_{2n} and e_3 is $\alpha_{2n} - \alpha_1 + \alpha_2$. We say that this crease pattern is *derived* at v via φ . We can also iterate this construction and get more derived crease patterns.

REMARK 10. Notice that if φ folds flat, then, for every vertex $v \in \mathscr{V}$ of degree at least 4, there is an angle α_1 such that $\alpha_1 \leq \alpha_i$, for all *i*, and $\varphi(e_1) \neq \varphi(e_2)$. In fact, if for all minimal angles α_i , we have $\varphi(e_i) = \varphi(e_{i+1})$ then, by Remark 9, we get that $\alpha_i = \alpha_{i+1}$ or $\alpha_i = \alpha_{i-1}$, hence α_{i-1} and α_{i+1} are minimal angles too, so, iterating this argument, we find that all the angles are equal. However, by Maekawa's Theorem, there are two consecutive creases mapped to different values by φ , therefore we get an absurd.

Definition 13. Let v be a vertex of \mathscr{C} . We define \mathscr{C} and φ to be *strictly compatible* at v as follows

- (1) if v has degree 2, then \mathscr{C} and φ are strictly compatible at v if they are compatible;
- (2) if v has degree at least 4, then \mathscr{C} and φ are strictly compatible at v if they are compatible, the map φ induces a derived crease pattern at v, and for every derived crease pattern \mathscr{C}' , we have that \mathscr{C}' and φ are strictly compatible at v.

Definition 14. We say that \mathscr{C} and φ are *strictly compatible* if they are strictly compatible at every vertex.

We want to provide a criterion to establish if φ folds flat or not. We start with the case of a one-vertex crease pattern, and then we prove the general result.

Lemma 3. Let $(\{v\}, \{e_1, \ldots, e_{2n}\})$ be a one-vertex crease pattern and let φ be a folding map. Then φ folds flat if and only if

- (1) Kawasaki's condition holds,
- (2) Maekawa's condition holds,
- (3) \mathscr{C} and φ are strictly compatible.

Proof. We have already seen that the three conditions are necessary. Now we prove by induction on $n \ge 1$ that they are sufficient.

If n = 1 then Maekawa's condition implies that $\varphi(e_1) = \varphi(e_2)$, and by Kawasaki's condition $\alpha_1 = \alpha_2$. Hence there are only two possibilities for φ , and both of them fold flat.

If n > 1, let $\alpha_1 \leq \alpha_h$ for all h. By Remark 10, we can assume that $\varphi(e_1) \neq \varphi(e_2)$. If n = 2 then, by Maekawa's condition,

$$\varphi(e_1) \neq \varphi(e_2) = \varphi(e_3) = \varphi(e_4),$$

and by Kawasaki's condition,

$$\alpha_4 - \alpha_1 + \alpha_2 = \alpha_3 > 0,$$

and so φ folds flat, by compatibility condition.

If n > 2, we consider the derived crease pattern

 $\mathscr{C}' = (\{v\}, \mathscr{E}' = \{e_3, \dots, e_{2n}\}),$

where the angle between e_3 and e_{2n} is $\alpha'_1 = \alpha_{2n} - \alpha_1 + \alpha_2 > 0$. Note that \mathscr{C}' and the restriction of φ to \mathscr{E}' satisfy the three conditions of the statement, so by induction we get the result.

Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern, with $\mathscr{V} = \{v_1, \ldots, v_r\}$. We want to construct a polygonal decomposition of \mathscr{C} as follows. For every face F of \mathscr{C} , we take an internal point p_F . Then for every crease f in the boundary of F, we take its middle point p_f , and we consider the edge whose endpoints are p_F and p_f . We do the same with the edges of the boundary of F that are contained in the boundary of Q. Let D be the set of all edges constructed in this way, then D divides the square Q in a finite number of polygons $\{P_1, \ldots, P_r\}$ such that

- (1) $P_i \subset Q$ for all i, and $\cup_i P_i = Q$,
- (2) $P_i \cap P_j$ is contained in the boundary of P_i (and P_j),
- (3) $v_i \in \mathscr{V}$ is contained in the interior of P_i , for every $i = 1, \ldots, r$,
- (4) if e is a common edge of the boundary of P_i and P_j , then e is trasversal to the edge through v_i and v_j ; moreover e does not intersect any crease incident to v_i , except eventually for the one incident to v_j .

Theorem 3. Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern and let φ be a folding map for \mathscr{C} . Then φ folds flat if and only if

- (1) Kawasaki's condition is satisfied at every vertex,
- (2) Maekawa's condition is satisfied at every vertex,
- (3) \mathscr{C} and φ are strictly compatible.

Proof. We only need to prove that the three conditions are sufficient. Let $\{P_1, \ldots, P_r\}$ be a decomposition of \mathscr{C} as above. By Lemma 3, we can fold each P_i separately, that means that the restriction of φ to each P_i folds flat. Moreover, since the non-collision condition holds, we can glue these pieces and obtain a flat origami.

6. FLAT-FOLDING CREASE PATTERNS

6.1. Construction of the associated graph. Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern. The following definition generalizes the notion of *origami line graph* given by Hull [2], including all conditions that force creases to fold in a certain way.

Definition 15. The graph associated to \mathscr{C} is the graph $G(\mathscr{C})$ constructed as follows:

- (1) the vertices of $G(\mathscr{C})$ are the creases in \mathscr{C} ; we identify two vertices e and f of $G(\mathscr{C})$ if they are adjacent creases in \mathscr{C} for which $P_{=}(e, f)$ is defined and holds;
- (2) if $e, f \in \mathscr{E}$, then (e, f) is an edge in $G(\mathscr{C})$ if and only if e and f are adjacent creases in \mathscr{C} for which $P_{\neq}(e, f)$ is defined and holds.

REMARK 11. Recall that the properties $P_{=}(e, f)$ and $P_{\neq}(e, f)$ are defined only for the pairs (e, f) of adjacent creases which are consecutive as creases in some derived crease pattern. Notice that if \mathscr{C} is flat-foldable then $G(\mathscr{C})$ is 2-vertex-colorable (any flat-folding map for \mathscr{C} gives a 2-colouring of $G(\mathscr{C})$). Moreover, the graph $G(\mathscr{C})$ can contain loops (since we identified some vertices), and if it does then obviusly it is not 2-vertex-colorable. For example, the graph associated to the crease pattern of Example 2 contains a loop.

6.2. Maekawa's condition for a crease pattern. Let $v \in \mathcal{V}$ be a vertex of \mathscr{C} , and assume that $G(\mathscr{C})$ is 2-vertex-colorable. Then $G(\mathscr{C})$ gives conditions on the set $\mathscr{E}_v = \{e_1, \ldots, e_{2n}\}$ of the creases incident at v. In particular, let G_1, \ldots, G_r be the connected components of $G(\mathscr{C})$ which involves creases incident at v, such that none of these components corresponds to a single crease of \mathscr{C} (which means that it is a vertex which corresponds to only one crease). Let λ be a 2-colouring of $G(\mathscr{C})$. We denote by $\lambda_1, \ldots, \lambda_r$ the restrictions of λ to $G_1 \cap \mathscr{E}_v, \ldots, G_r \cap \mathscr{E}_v$ respectively. Then we get non negative integers $\eta_0(\lambda_i)$ and $\eta_1(\lambda_i)$, for $i = 1, \ldots, r$.

Definition 16. Let \mathscr{C} be a crease pattern whose associated graph $G(\mathscr{C})$ is 2-vertex-colorable. We say that \mathscr{C} satisfies Maekawa's condition at v if, for every 2-colouring λ of $G(\mathscr{C})$, there exists a map $\epsilon \colon \{1, \ldots, r\} \to \mathbb{Z}/2\mathbb{Z}$ such that the following two disequalities hold

$$\sum_{i=1}^{r} \eta_{\epsilon(i)}(\lambda_i) \le n+1,$$
$$\sum_{i=1}^{r} \eta_{1-\epsilon(i)}(\lambda_i) \le n-1.$$

REMARK 12. Notice that if \mathscr{C} is flat-foldable, then it satisfies Maekawa's condition at every vertex. For istance, the crease pattern in Example 3 satisfies Kawasaki's condition at every vertex, but it does not satisfy Maekawa's condition at v (see Figure 4).

REMARK 13. With the notations as in Definition 16, if $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ is a crease pattern which satisfies Kawasaki's and Maekawa's conditions at $v \in \mathscr{V}$, then, by Lemma 3 there exists a flat-folding map φ_v for $(\{v\}, \mathscr{E}_v)$ (we write \mathscr{E}_v for the set of creases in \mathscr{E} incident at v) such that

$$\varphi(e) = \epsilon(i)\lambda_i(e) + (1 - \epsilon(i))(1 - \lambda_i(e)),$$

for $e \in G_i \cap \mathscr{E}_v$. More explicitly, Kawasaki's condition at v allows us to choose a flat-folding map φ_v defined over \mathscr{E}_v , that "respects" the forced creases.

6.3. The main result.

Theorem 4. Let $\mathscr{C} = (\mathscr{V}, \mathscr{E})$ be a crease pattern which satisfies the noncollision condition. Then \mathscr{C} is flat-foldable if and only if

- (1) Kawasaki's condition is satisfied at every vertex,
- (2) the associated graph $G(\mathscr{C})$ is 2-vertex-colorable,
- (3) C satisfies Maekawa's condition at every vertex.

Proof. By Remark 11 and Remark 12, it is enough to prove that the three conditions are sufficient.

FLAVIA POMA

Let λ' be a 2-colouring of $G(\mathscr{C})$. Notice that λ' induces in a natural way a folding map φ' for \mathscr{C} . Moreover, we can change the color of λ' at a vertex of $G(\mathscr{C})$ which corresponds to only one crease in \mathscr{C} and get an other 2-colouring λ'' .

Since \mathscr{C} satisfies Maekawa's condition at every vertex, we can change the color of λ' at some vertices of $G(\mathscr{C})$, each of which corresponds to only one crease of \mathscr{C} , so to get a 2-colouring λ , which induces a folding map φ that satisfies Maekawa's condition at every vertex (see Remark 13).

Furthermore, the map φ and \mathscr{C} are strictly compatible, since φ is induced by a 2-colouring of the associated graph $G(\mathscr{C})$. Hence the pair (\mathscr{C}, φ) verifies the hypothesis of Theorem 3 and it follows that φ is a flat-folding map for the crease pattern \mathscr{C} .

References

- M. Bern and B. Hayes. The complexity of flat origami. Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 175–183, 1996.
- [2] T. Hull. On the mathematics of flat origamis. Congressus Numerantium, 100:215-224, 1994.
- [3] T. Hull. The combinatorics of flat folds: a survey. Origami3 : Proceedings of the Third International Meeting of Origami Science, Mathematics, and Education, 100:29–38, 2002.
- [4] K. Kasahara and T. Takahama. Origami for the connoisseur. Japan Publications, 1987.
- [5] T. Kawasaki. On the relation between mountain-creases and valley-creases of a flat origami. Proceedings of the First International Meeting of Origami Science and Technology, pages 229–237, 1989.
- T. Kawasaki and M. Yoshida. Crystallographic flat origamis. Memoirs of the Faculty of Science, Kyushu Univarsity, Series A, 42(2):153–157, 1988.