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Abstract. A crease pattern is the fingerprint that an origami leaves
on the paper after being unfolded. A very natural question about the
mathematics of origami is if it is possible to read on the crease pattern
whether or not it belongs to a flat origami (i.e., an origami that has
only 2 dimensions, if we do not consider the thickness of the paper).
Necessary conditions for a crease pattern to fold flat have been given
by T. Kawasaki [5] and T. Hull [2]. In this paper we give a criterion for
flat-foldability of a crease pattern in the case the creases are “not too
short” (Theorem 4).

1. Introduction

1.1. The flat-foldability problem. Let consider the square

Q = [0, 1]× [0, 1] ⊂ R2.

Definition 1. A crease pattern is the data C = (V ,E ), where
(1) E is a finite set of edges contained in Q,
(2) V is the set of all endpoints of edges in E which are contained in

(0, 1)× (0, 1),
subject to the conditions

(1) if e and f are two elements of E , then their intersection is either
empty or a point of V ,

(2) every point in V is the endpoint of an even number of edges in E .

The last condition will be clear after we state Maekawa’s Theorem (see
Remark 3).

We call vertices the elements of V and creases the elements of E . The
creases of a crease pattern C divide the square Q in a finite number of
polygons, that we call faces. We say that a crease e is incident to a vertex v
if v is an endpoint of e; two vertices are adjacent if they are the endpoints
of the same crease; two creases e and f are adjacent if they are incident to
the same vertex; finally, we say that two creases are consecutive if they are
incident to a vertex v and at least one of the two angles between them is
not crossed by any other crease incident to v.

Remark 1. If C = ({v},E ) is a one-vertex crease pattern, then we write

E = {e1, . . . , e2n}
and we mean that the creases are consecutive and ordinated counterclock-
wise. Moreover, we denote by α1, . . . , α2n the angles between the creases, so
that αi is the angle between ei and ei+1, for i = 1, . . . , 2n (where e2n+1 = e1).
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Definition 2. Let C = (V ,E ) be a crease pattern. A folding map for C is
a function

ϕ : E → Z/2Z.
We denote by η0(ϕ) and η1(ϕ) respectively the number of creases of C
mapped to 0 by ϕ and the number of creases mapped to 1.

A folding map tells us how to fold each crease: we fix an orientation of the
square Q (i.e., we view Q embedded in R3 and lying in the plane {z = 0},
where x, y, z are the coordinates of R3), now if ϕ(e) = 0 then e is a valley
crease, otherwise e is a mountain crease.

Figure 1. Mountain and valley creases.

Definition 3. Let ϕ be a folding map for a crease pattern C . An injective
deformation of C with respect to ϕ is a continuous map

Φ : Q× [0, 1]→ R3

such that
(1) Φ(q, 0) = q, for all q ∈ Q,
(2) for all t ∈ [0, 1], the image of Φ(−, t) does not contain transversal

self-intersections;
(3) Φ(−, t) is an isometry on each face of C , for all t ∈ [0, 1],
(4) Φ(−, t) preserves the orientation, for all t ∈ [0, 1],
(5) if F1 and F2 are two adjacent faces and e ∈ E is a common crease,

then
0 + ϕ(e)π ≤ β(t) ≤ π + ϕ(e)π,

for all t ∈ [0, 1], where β(t) is the angle between Φ(F1, t) and Φ(F2, t).

The angle β(t) is well-defined once we fixed an embedding of the square
Q in R3. We think at an injective deformation as an invisible origamist
folding the square Q, following the given crease pattern; so Φ(Q, t) is a shot
of the origami at the istant t ∈ [0, 1]. The condition on the transversal
self-intersections formalizes the fact that the paper cannot intersect itself.

Definition 4. Let C = (V ,E ) be a crease pattern. A folding map ϕ for C
is a flat-folding map if there exists an injective deformation Φ of ϕ such that

Φ(Q, 1) ⊂ H
for some plane H ⊂ R3. In this case we also say that ϕ folds flat.

Remark 2. If ϕ is a flat-folding map, then also 1− ϕ folds flat, where

(1− ϕ)(e) = 1− ϕ(e).

In fact, if Φ is an injective deformation of ϕ, then Φ ◦ Rπ is an injective
deformation of 1− ϕ, where Rπ is the rotation of angle π.

Definition 5. A crease pattern C = (V ,E ) is flat-foldable if there exists a
flat-folding map ϕ for C .
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1.2. One-vertex crease patterns. The flat-foldability problem is com-
pletely understood in the case there is only one vertex ([4], [5]).

Theorem 1 (Maekawa). Let C = ({v},E ) be a one-vertex crease pattern.
If ϕ is a flat-folding map for C , then

(1) η0(ϕ)− η1(ϕ) = ±2.

Theorem 2 (Kawasaki). Let C = ({v}, {e1, . . . , e2n}) be a one-vertex crease
pattern. Then C is flat-foldable if and only if

(2) α1 − α2 + · · ·+ α2n−1 − α2n = 0.

If v is a vertex of a crease pattern C , then we will refer to equation (2)
as to the Kawasaki’s condition at v. Moreover if ϕ is a folding map for C ,
then we will refer to equation (1) as to the Maekawa’s condition at v. Notice
that Kawasaki and Maekawa’s conditions are still necessary in the case of a
crease pattern with more vertices, but in general they are not sufficient (see
examples in Section 2).

Remark 3. Here the last condition of Definition 1 becomes clear. Indeed,
Maekawa’s Theorem does not need the assuption on the degree of each
vertex, instead it implies that if C is flat-foldable then E contains an even
number of creases. In fact, let r be the number of creases in E , then

η0(ϕ) + η1(ϕ) = r;

moreover, by Maekawa’s Theorem,

η0(ϕ)− η1(ϕ) = ±2,

hence r = 2(η0(ϕ)∓ 1).

1.3. From local to global flat-foldability. The case of a crease pattern
with more than one vertex has been treated by T. Kawasaki ([5]), T. Hull
([2], [3]), M. Bern and B. Hayes ([1]).

Kawasaki firstly observed that local flat-foldability (i.e., Kawasaki’s con-
dition) does not imply global flat-foldability in general (Remark 4). Hull
proposed to associate to a given crease pattern a graph in such a way that
it is possible to check some properties of the crease pattern directly on the
graph by looking if it is 2-vertex-colorable ([2]). This seems to be an in-
teresting idea, because checking the 2-vertex-colorability of a graph is very
easy. The hard part is to construct a graph so that flat-foldability can be
completely verified on it.

In this paper we start investigating what kind of obstructions to global
flat-foldability can occur. It comes out that there are two types of problems:

(1) lenght-related obstructions, regarding the lenght of the creases (Ex-
ample 4);

(2) forced creases, regarding local conditions that force creases to fold
in a certain way and which do not agree globally (Example 2 and
Example 3).

We do not want to deal with the first type here, so we give just some ideas on
a way to fix it. Instead we discuss the second type of obstructions, studing
the conditions that force two creases to fold equal or different (Lemma 2
and Lemma 1).



4 FLAVIA POMA

Finally we characterize the folding maps which fold flat (Theorem 3) and
use this to prove our main result on the flat-foldability of a crease pattern
(Theorem 4).

Acknowledgments. I would like to thank Thomas Hull for careful reading.
He pointed out some mistakes and his comments helped to improve the
exposition.

2. Obstructions to global flat-folding

Since Kawasaki’s condition is not sufficient in the general case, we look
for additional conditions for flat-foldability. Therefore, we try to understand
what kind of problems can occur.

Remark 4 (Kawasaki [5]). If ({v}, {e1, . . . , e2n}) is a one-vertex flat-foldable
crease pattern and αi−1 > αi < αi+1, then ϕ(li) 6= ϕ(li+1), for all flat-folding
maps ϕ (that means that ei and ei+1 cannot be both mountain neither valley
folds).

Hull observed that, in the case of a multi-vertex crease pattern, the con-
ditions given by Remark 4 give rise to non trivial global conditions as we
see in the following example ([2]).

Example 1 (Hull [2]). The crease pattern in Figure 2 can’t fold flat, by
Remark 4. In fact, if ϕ is a flat-folding map, then

ϕ(e1) 6= ϕ(e2) 6= ϕ(e3) 6= ϕ(e1),

but each crease has only two possible values, so we get an absurd.

e3

e2e1

60◦

Figure 2.

Example 2. Consider the crease pattern in Figure 3. By Remark 4 and
Maekawa’s Theorem, if ϕ is a flat-folding map, then

ϕ(e1) = ϕ(e2) = ϕ(e3) = ϕ(e4) 6= ϕ(e1),

hence this crease pattern is not flat-foldable.

e1e2

e3 e4

60◦100◦

Figure 3.
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Example 2 suggests that in order to study flat-foldability for a crease
pattern we have to take in consideration all the conditions that force a
crease to fold in a fixed way.

Example 3. Consider the crease pattern in Figure 4. By Remark 4 and
Maekawa’s Theorem applied at every vertex except v, we get that, if ϕ is a
flat-folding map, then

ϕ(e1) = ϕ(e2) = ϕ(e3) = ϕ(e4) = ϕ(e5),

ϕ(f1) = ϕ(f2) = ϕ(f3) = ϕ(f4) = ϕ(f5).

But this implies that Maekawa’s condition at v cannot be satisfied.

v f1 f2

f3

f5

f4

e1e2

e3

e5

e4

Figure 4.

Hull provided also the following example, which shows that something is
still missing.

Example 4 (Hull [3]). The crease pattern in Figure 5 doesn’t fold flat unless
d becomes longer, hence this time the problem is lenght-related.

d

45◦ 70◦

Figure 5.

We will see that, if we assume that Kawasaki’s condition holds, then the
only kinds of obstructions to flat-foldability that can occur are the ones
sketched in Example 2, Example 3 and Example 4.

3. The non-collision condition

In this paper we do not want to deal with the kind of obstruction of Ex-
ample 4, so we define a “non-collision” condition as follows. More explicitly,
given a crease pattern C = (V ,E ) and a collection {ϕv | v ∈ V } of flat-
folding maps that agree on the creases of C (where every ϕv is defined on
the creases incident at v), we want to find conditions that ensure that we
can glue these maps together to get a global flat-folding map.
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Let ({v, w},Ev ∪ Ew ∪ {d}) be a crease pattern, with

Ev = {e2, . . . , e2m}
Ew = {f2, . . . , f2n},

where we mean that Ev (respectively, Ew) are creases incident at v (respec-
tively, at w), and d is a crease incident at both v and w. Moreover let
α1, . . . , α2m be the angles between the creases incident at v, and β1, . . . , β2n

the angles between creases incident at w (Figure 6). We define

σi = α1 − α2 + · · ·+ α2i−1 − α2i

σh = α1 − α2 + · · ·+ α2h−1,

where 1 ≤ i ≤ m− 1 and 1 ≤ h ≤ m. Similarly, we define

τi = β1 − β2 + · · ·+ β2i−1 − β2i

τh = β1 − β2 + · · ·+ β2h−1,

where 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n. If e is a crease, we denote by l(e) the
length of e.

f2n

w
d

v

e2m

e3 e2 f2 f3

α1

α2

β1
β2

Figure 6.

Definition 6. We say that v and w satisfy the non-collision condition if
(1) there exists 1 ≤ j ≤ n such that, for all 1 ≤ i ≤ m− 1,

(l(d)− l(e2i+1) cosσi) tan τ j ≥ l(e2i+1) sinσi;

(2) there exists 1 ≤ i ≤ m such that, for all 1 ≤ j ≤ n− 1,

(l(d)− l(f2j+1) cos τj) tanσi ≥ l(f2j+1) sin τj .

Remark 5. Assume that Kawasaki’s condition holds at v and w. Then we
can fold the creases incident at v and w separately, that means that there
exist two flat-folding maps ϕv and ϕw. We can assume that ϕv(d) = ϕw(d)
(otherwise, we consider 1 − ϕw instead of ϕw). The non-collision condition
assures that the folding map obtained by gluing ϕv and ϕw folds flat. More
explicitly, the first condition of Definition 6 implies that, gluing ϕv and ϕw,
we can put all the creases in Ev inside the crease fj without ripping the
paper.

Definition 7. We say that a crease pattern C satisfies the non-collision
condition if every couple of adjacent vertices does.
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Remark 6. Let C = (V ,E ) be a crease pattern that satisfies the non-
collision condition. Let {ϕv | v ∈ V } be a collection of flat-folding maps
that agree on the creases of C (where every ϕv is defined on the creases
incident at v). Then it follows by Remark 5, using an inductive argument,
that we can glue them together to get a flat-folding map ϕ for C .

In the following we assume that all crease patterns satisfy the non-collision
condition.

Remark 7. Notice that Definition 6 is too strict for our aim. For example,
in the case of a crease pattern with only two vertices, it is enough to require
that at least one of the two conditions of Definition 6 holds in order to
ensure that local flat-folding maps which agree can be glued together to
give a global flat-folding map. So, assuming that the non-collision condition
holds, we are throwing away some flat-foldable crease patterns. In order to be
accurate, one should require in Definition 6 that, given a crease pattern C ,
at least one condition holds, then one derives an oriented graph associated
to C and finally one has to look at the conditions on this graph that imply
the flat-foldability. However, this is not our purpoise, so we put ourselves in
the case the “strong” non-collision condition holds.

4. Flat-foldability of two consecutive creases

We want to characterize the crease patterns C = (V ,E ) for which there
exists a collection {ϕv | v ∈ V } of flat-folding maps that agree on the creases
of C . Notice that the existence of a collection {ϕv | v ∈ V } of flat-folding
maps is ensured by (actually equivalent to) requiring that Kawasaki’s condi-
tion holds at every vertex (Theorem 2), hence the problem is to make them
agree on E .

We saw in Section 2 that sometimes the creases are “forced” to fold in a
certain way, so now we want to give conditions for two consecutive creases
to be forced to be equal or different.

Definition 8. We say that two creases e and f are forced to be equal (re-
spectively, different) if for every flat-folding map ϕ, we have ϕ(e) = ϕ(f)
(respectively, ϕ(e) 6= ϕ(f)). Moreover, we say that a crease e is forced if for
every vertex of e there exists at least one crease f 6= e such that e and f are
consecutive and forced to be equal or different.

The results of this section are quite technical, so we need some notations.
Let ({v},E ) be a flat-foldable crease pattern with E = {e1, . . . , e2n}. We
define the following

σs = α2 − α3 + · · ·+ α2s,
σs = α2n − α2n−1 + · · ·+ α2s+2,

where s ∈ {1, . . . , n− 1}, and

I = { 1 ≤ i ≤ n− 1 |σi > α1 }
J =

{
1 ≤ j ≤ n− 1

∣∣σj > α1

}
.
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Notice that, by Kawasaki’s condition, we have

σs = α1 − α2n + · · ·+ α2s+1,
σs = α1 − α2 + · · ·+ α2s+1.

Lemma 1. The creases e1 and e2 are forced to be different if and only if
there exist 1 ≤ i < j ≤ n− 1 such that σi > α1 < σj and

(1) σl < α1, for all j < l ≤ n− 1,
(2) σr < α1, for all 1 ≤ r < i.

Proof. Suppose that ϕ(e1) 6= ϕ(e2), for all flat-folding maps ϕ. By contrad-
diction, if σi ≤ α1 for every 1 ≤ i ≤ n− 1, then we define

ϕ(eh) =


1 if h ≡ 0 (2)
1 if h = 1
0 otherwise.

In Figure 7 we see a transversal section of Q, being folded according to ϕ,
at a certain instant.

α2n−1

e2n

α2n

e1 α1 e2

α2

e3

Figure 7.

In particular, we can cut Q along e1 and fold the creases e2, . . . , e2n in
such a way that the creases with even indices are mountain and those with
odd indices are valley. After that, we see that we can glue along e1 and we
get a flat origami, since σi ≤ α1 for all 1 ≤ i ≤ n− 1. It follows that ϕ folds
flat. A similar argument holds if σj ≤ α1 for all 1 ≤ j ≤ n− 1.

α2n

e1 α1 e2

α2
α2l+1

e2l+1

α2l α2r+2

e2r+2

α2r+1

Figure 8.

Otherwise, if i = min I, j = max J and there exists j < l ≤ n − 1 such
that σl ≥ α1, then we can assume that l realizes the maximum of σs for
j < s ≤ n − 1. Moreover, let 1 ≤ r ≤ j be an index which realizes the
maximum of σs for 1 ≤ s ≤ n− 1. We define

ϕ(eh) =


0 if h = 2k, k = 1, . . . , r, r + 2, . . . , l
0 if h = 2k + 1, k = 0, l + 1, . . . , n− 1
1 otherwise.
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As before, we can cut along e2r+2 and fold the other creases according to ϕ
(where 0 corresponds to valley folds and 1 corresponds to mountain folds),
and we see that by assumptions we can glue along e2r+2 and get a flat
origami (Figure 8). Again, a similar argument holds if σr ≥ α1 for some
1 ≤ r < i.

α2n

e1 α1 e2

α2

α2i
e2i e2j+2

α2j+2

Figure 9.

Assume now that the conditions of the statement hold (Figure 9). Note
that the creases e2i and e2j+2 cannot lie on the same side with respect to
α1, because by hypothesis,

σi > σl, for all j < l ≤ n,

σj > σr, for all 0 ≤ r < i,

and so we cannot put the crease e2i+1 inside any of the creases in the set
{e1, e2n, . . . , e2j+2}, neither we can put the crease e2j+1 inside any of the
creases in {e1, e2, . . . , e2i}. Then the creases e2i and e2j+2 must lie on oppo-
site sides with respect to α1, and the only way to make it happens is to fold
e1 and e2 in different ways, since

σl < α1 > σr,

for all j < l ≤ n− 1 and 1 ≤ r < i. �

Lemma 2. The creases e1 and e2 are forced to be equal if and only if

σi < α1 > σj,

for all 1 ≤ i, j ≤ n− 1.

Proof. Assume that ϕ(e1) = ϕ(e2), for every flat-folding map ϕ.

e2n

α2n

e1 α1

e2

α2

e2l+2

α2l+1

e2l+1
α2l

e2l

Figure 10.

By contraddiction, if there exists 1 ≤ i ≤ n − 1 such that σi ≥ α1, then
let i ≤ l ≤ n − 1 be such that σs ≤ σl, for all l ≤ s ≤ n − 1. We define the
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following folding map

ϕ(eh) =


1 if h ≡ 0 (2)
1 if h = 2l + 1
0 otherwise,

and we see easily that ϕ folds flat (Figure 10). In particular, we can cut
along e2l+1 and fold the other creases according to ϕ. Then, by hypothesis,
we can glue along eel+1 and get a flat origami. A similar argument holds if
there exists 1 ≤ j ≤ n− 1 such that σj ≥ α1.

α2n

e1 α1

e2

α2

αs

αs−1

Figure 11.

Suppose now that
σi < α1 > σj ,

for all 1 ≤ i, j ≤ n− 1, and let ϕ be a folding map such that ϕ(e1) 6= ϕ(e2).
We cut along es for some s 6= 1, 2 and we fold according to ϕ. It follows from
the hypothesis that the creases {e3, . . . , es−1} and the creases {es+1, . . . , e2n}
lie on opposite sides with respect to α1, hence we cannot glue along es
(Figure 11).

Since this is true for all s 6= 1, 2, we get that ϕ is not flat-foldable. �

Definition 9. We denote by P 6=(e1, e2) the conditions of Lemma 1. Simi-
larly, we denote by P=(e1, e2) the conditions of Lemma 2.

Definition 10. With the notation as before, if α1 ≤ αh for all h, then we
can consider the crease pattern

C ′ = ({v}, {e3, . . . , e2n}),
where the angle between the creases e2n and e3 is α2n−α1 +α2. The crease
pattern C ′ is said to be derived. We can iterate this construction and get
more derived crease patterns.

We think at C ′ as if we folded the creases e1 and e2 in different ways and
then we identified the layers of the folded square Q together.

Remark 8. Note that C ′ is not flat anymore; however, since we didn’t use
flatness hypothesis in the previous results, we can define the properties P=

and P 6= for the pair (e2n, e3).

5. Flat-folding maps

Let C = (V ,E ) be a crease pattern and let ϕ be a folding map for C .

Definition 11. We say that C and ϕ are compatible if the following two
conditions hold for every pair of consecutive creases (e, f),
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(1) if P=(e, f) is satisfied then ϕ(e) = ϕ(f),
(2) if P 6=(e, f) is satisfied then ϕ(e) 6= ϕ(f).

Remark 9. It follows from Lemma 1 and Lemma 2 that if ϕ folds flat then
C and ϕ are compatible.

Definition 12. Let v ∈ V be a vertex and let α1 ≤ αh for all h, where
{αh |h = 1, . . . , 2n } are the angles between the creases { eh |h = 1, . . . , 2n }
incident at v. If ϕ(e1) 6= ϕ(e2), then we can define a crease pattern

C ′ = (V ,E \ {e1, e2}),
where the angle between e2n and e3 is α2n−α1 +α2. We say that this crease
pattern is derived at v via ϕ. We can also iterate this construction and get
more derived crease patterns.

Remark 10. Notice that if ϕ folds flat, then, for every vertex v ∈ V of
degree at least 4, there is an angle α1 such that α1 ≤ αi, for all i, and
ϕ(e1) 6= ϕ(e2). In fact, if for all minimal angles αi, we have ϕ(ei) = ϕ(ei+1)
then, by Remark 9, we get that αi = αi+1 or αi = αi−1, hence αi−1 and
αi+1 are minimal angles too, so, iterating this argument, we find that all the
angles are equal. However, by Maekawa’s Theorem, there are two consecutive
creases mapped to different values by ϕ, therefore we get an absurd.

Definition 13. Let v be a vertex of C . We define C and ϕ to be strictly
compatible at v as follows

(1) if v has degree 2, then C and ϕ are strictly compatible at v if they
are compatible;

(2) if v has degree at least 4, then C and ϕ are strictly compatible at v
if they are compatible, the map ϕ induces a derived crease pattern
at v, and for every derived crease pattern C ′, we have that C ′ and
ϕ are strictly compatible at v.

Definition 14. We say that C and ϕ are strictly compatible if they are
strictly compatible at every vertex.

We want to provide a criterion to establish if ϕ folds flat or not. We start
with the case of a one-vertex crease pattern, and then we prove the general
result.

Lemma 3. Let ({v}, {e1, . . . , e2n}) be a one-vertex crease pattern and let ϕ
be a folding map. Then ϕ folds flat if and only if

(1) Kawasaki’s condition holds,
(2) Maekawa’s condition holds,
(3) C and ϕ are strictly compatible.

Proof. We have already seen that the three conditions are necessary. Now
we prove by induction on n ≥ 1 that they are sufficient.

If n = 1 then Maekawa’s condition implies that ϕ(e1) = ϕ(e2), and by
Kawasaki’s condition α1 = α2. Hence there are only two possibilities for ϕ,
and both of them fold flat.

If n > 1, let α1 ≤ αh for all h. By Remark 10, we can assume that
ϕ(e1) 6= ϕ(e2). If n = 2 then, by Maekawa’s condition,

ϕ(e1) 6= ϕ(e2) = ϕ(e3) = ϕ(e4),
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and by Kawasaki’s condition,

α4 − α1 + α2 = α3 > 0,

and so ϕ folds flat, by compatibility condition.
If n > 2, we consider the derived crease pattern

C ′ = ({v},E ′ = {e3, . . . , e2n}),
where the angle between e3 and e2n is α′1 = α2n−α1 +α2 > 0. Note that C ′

and the restriction of ϕ to E ′ satisfy the three conditions of the statement,
so by induction we get the result. �

Let C = (V ,E ) be a crease pattern, with V = {v1, . . . , vr}. We want to
construct a polygonal decomposition of C as follows. For every face F of C ,
we take an internal point pF . Then for every crease f in the boundary of F ,
we take its middle point pf , and we consider the edge whose endpoints are
pF and pf . We do the same with the edges of the boundary of F that are
contained in the boundary of Q. Let D be the set of all edges constructed
in this way, then D divides the square Q in a finite number of polygons
{P1, . . . , Pr} such that

(1) Pi ⊂ Q for all i, and ∪iPi = Q,
(2) Pi ∩ Pj is contained in the boundary of Pi (and Pj),
(3) vi ∈ V is contained in the interior of Pi, for every i = 1, . . . , r,
(4) if e is a common edge of the boundary of Pi and Pj , then e is trasver-

sal to the edge through vi and vj ; moreover e does not intersect any
crease incident to vi, except eventually for the one incident to vj .

Theorem 3. Let C = (V ,E ) be a crease pattern and let ϕ be a folding map
for C . Then ϕ folds flat if and only if

(1) Kawasaki’s condition is satisfied at every vertex,
(2) Maekawa’s condition is satisfied at every vertex,
(3) C and ϕ are strictly compatible.

Proof. We only need to prove that the three conditions are sufficient. Let
{P1, . . . , Pr} be a decomposition of C as above. By Lemma 3, we can fold
each Pi separately, that means that the restriction of ϕ to each Pi folds flat.
Moreover, since the non-collision condition holds, we can glue these pieces
and obtain a flat origami. �

6. Flat-folding crease patterns

6.1. Construction of the associated graph. Let C = (V ,E ) be a crease
pattern. The following definition generalizes the notion of origami line graph
given by Hull [2], including all conditions that force creases to fold in a
certain way.

Definition 15. The graph associated to C is the graph G(C ) constructed
as follows:

(1) the vertices of G(C ) are the creases in C ; we identify two vertices e
and f of G(C ) if they are adjacent creases in C for which P=(e, f)
is defined and holds;

(2) if e, f ∈ E , then (e, f) is an edge in G(C ) if and only if e and f are
adjacent creases in C for which P 6=(e, f) is defined and holds.
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Remark 11. Recall that the properties P=(e, f) and P 6=(e, f) are defined
only for the pairs (e, f) of adjacent creases which are consecutive as creases
in some derived crease pattern. Notice that if C is flat-foldable then G(C ) is
2-vertex-colorable (any flat-folding map for C gives a 2-colouring of G(C )).
Moreover, the graph G(C ) can contain loops (since we identified some ver-
tices), and if it does then obviusly it is not 2-vertex-colorable. For example,
the graph associated to the crease pattern of Example 2 contains a loop.

6.2. Maekawa’s condition for a crease pattern. Let v ∈ V be a vertex
of C , and assume that G(C ) is 2-vertex-colorable. Then G(C ) gives condi-
tions on the set Ev = {e1, . . . , e2n} of the creases incident at v. In particular,
let G1, . . . Gr be the connected components of G(C ) which involves creases
incident at v, such that none of these components corresponds to a single
crease of C (which means that it is a vertex which corresponds to only one
crease). Let λ be a 2-colouring of G(C ). We denote by λ1, . . . , λr the restric-
tions of λ to G1 ∩ Ev, . . . , Gr ∩ Ev respectively. Then we get non negative
integers η0(λi) and η1(λi), for i = 1, . . . , r.

Definition 16. Let C be a crease pattern whose associated graph G(C ) is
2-vertex-colorable. We say that C satisfies Maekawa’s condition at v if, for
every 2-colouring λ of G(C ), there exists a map ε : {1, . . . , r} → Z/2Z such
that the following two disequalities hold

r∑
i=1

ηε(i)(λi) ≤ n+ 1,

r∑
i=1

η1−ε(i)(λi) ≤ n− 1.

Remark 12. Notice that if C is flat-foldable, then it satisfies Maekawa’s
condition at every vertex. For istance, the crease pattern in Example 3 sat-
isfies Kawasaki’s condition at every vertex, but it does not satisfy Maekawa’s
condition at v (see Figure 4).

Remark 13. With the notations as in Definition 16, if C = (V ,E ) is a crease
pattern which satisfies Kawasaki’s and Maekawa’s conditions at v ∈ V , then,
by Lemma 3 there exists a flat-folding map ϕv for ({v},Ev) (we write Ev for
the set of creases in E incident at v) such that

ϕ(e) = ε(i)λi(e) + (1− ε(i))(1− λi(e)),
for e ∈ Gi∩Ev. More explicitly, Kawasaki’s condition at v allows us to choose
a flat-folding map ϕv defined over Ev, that “respects” the forced creases.

6.3. The main result.

Theorem 4. Let C = (V ,E ) be a crease pattern which satisfies the non-
collision condition. Then C is flat-foldable if and only if

(1) Kawasaki’s condition is satisfied at every vertex,
(2) the associated graph G(C ) is 2-vertex-colorable,
(3) C satisfies Maekawa’s condition at every vertex.

Proof. By Remark 11 and Remark 12, it is enough to prove that the three
conditions are sufficient.
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Let λ′ be a 2-colouring of G(C ). Notice that λ′ induces in a natural way a
folding map ϕ′ for C . Moreover, we can change the color of λ′ at a vertex of
G(C ) which corresponds to only one crease in C and get an other 2-colouring
λ′′.

Since C satisfies Maekawa’s condition at every vertex, we can change the
color of λ′ at some vertices of G(C ), each of which corresponds to only one
crease of C , so to get a 2-colouring λ, which induces a folding map ϕ that
satisfies Maekawa’s condition at every vertex (see Remark 13).

Furthermore, the map ϕ and C are strictly compatible, since ϕ is induced
by a 2-colouring of the associated graph G(C ). Hence the pair (C , ϕ) verifies
the hypothesis of Theorem 3 and it follows that ϕ is a flat-folding map for
the crease pattern C . �
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