Definizione 1. Una funzione continua $f: X \to Y$ fra due spazi topologici si dice *propria* se:

Def1)
$$K \subseteq Y$$
 compatto in $Y \Rightarrow f^{-1}(K)$ compatto in X

Def2)
$$f
in chiusa \land (y \in Y \Rightarrow f^{-1}(y) \text{ compatto in } Y)$$

Lemma 1. Sia $f: X \to Y$ una funzione continua e chiusa tra due spazi topologici. Allora, per ogni $y \in Y$ e U intorno aperto di $f^{-1}(y)$, esiste V intorno aperto di y tale che $f^{-1}(V) \subseteq U$.

Dimostrazione. cU è chiuso in X perché complementare di un aperto. $f(^cU)$ è un chiuso in Y perché f è una funzione chiusa. $y \in {}^cf(^cU)$. Quest'ultimo insieme è un aperto perchè complementare di un chiuso. Mostriamo che è il V che cercavamo:

$$f^{-1}(V) = f^{-1}({}^{c}f({}^{c}U)$$

$$= {}^{c}(f^{-1}(f({}^{c}U)))$$

$$\subseteq {}^{c}({}^{c}U)$$

$$= U$$
Il complementare commuta con f^{-1}

$$f^{-1}(f(A)) \supseteq A$$

Teorema 1. Def2 \Rightarrow Def1.

Dimostrazione. Sia \mathcal{A} un ricoprimento aperto di $f^{-1}(K)$. Fissato $y \in K$, $f^{-1}(y)$ è compatto e \mathcal{A} ne costituisce un ricoprimento aperto. Possiamo quindi estrarre un ricoprimento finito $\tilde{\mathcal{A}}_y$ di $f^{-1}(y)$. Per il lemma 1 (la funzione è chiusa), possiamo trovare un aperto $V_y \ni y$ con $f^{-1}(V_y) \subseteq \bigcup_{A \in \tilde{\mathcal{A}}_y} A$.

 $\mathcal{B} = \{V_y | y \in K\}$ è un ricoprimento aperto di K. Essendo quest'ultimo compatto, possiamo estrarre da \mathcal{B} un sottoricoprimento finito $\tilde{\mathcal{B}} = \{V_y | y \in C\}$ (per un opportuno insieme finito $C \subseteq K$).

Sia ora $\widetilde{\tilde{\mathcal{A}}} = \bigcup_{y \in C} \tilde{\mathcal{A}}_y$. Osserviamo che $\widetilde{\mathcal{A}}$ è un sottoinsieme di \mathcal{A} ed è finito perché unione finita di insiemi finiti.

Per concludere mostriamo che $\tilde{\mathcal{A}}$ è un ricoprimento di $f^{-1}(K)$:

$$f^{-1}(K) \subseteq f^{-1}(\bigcup_{y \in C} V_y) = \bigcup_{y \in C} f^{-1}(V_y) \subseteq \bigcup_{y \in C} \bigcup_{A \in \tilde{\mathcal{A}}_y} A = \bigcup_{A \in \tilde{\mathcal{A}}} A \tag{1}$$

Lemma 2. Un compatto K, in uno spazio Y T2, è sempre chiuso.

Dimostrazione. Consideriamo $y \in Y - K$. Siano poi, per ogni $k \in K$, B_k e A_k intorni aperti, rispettivamente, di y e k con $B_k \cap A_k = \emptyset$ (è sempre possibile trovarne perché lo spazio è T2). L'insieme $\mathcal{A} = \{A_k | k \in K\}$ è un ricoprimento aperto di K. Per definizione di compatto ne possiamo estrarre un sottoinsieme finito $\tilde{\mathcal{A}} = \{A_k | k \in C\}$ (per un opportuno insieme finito $C \subseteq K$). Sia $V = \bigcap_{k \in C} B_k$. V è un'intersezione finita di aperti contenenti

y, quindi è un intorno aperto di y. Inoltre non interseca alcun elemento di \mathcal{A} per come sono stati scelti questi insiemi, quindi non interseca la loro unione e, pertanto, neppure K. Quindi, poiché per ogni $y \in Y - K$ è possibile costruire un intorno aperto contenuto interamente in Y - K, allora Y - K è aperto e K è chiuso.

Teorema 2. Se Y è T2 e localmente compatto, allora (Def1 \Rightarrow Def2).

Dimostrazione. Se $y \in Y$, allora $f^{-1}(y)$ è l'immagine inversa di un compatto, quindi è compatta.

Per mostrare che f è chiusa, consideriamo un chiuso $F \subseteq X$. Siano $y \in Y$ e K_y un intorno compatto di y. Per l'ipotesi, $f^{-1}(K_y)$ è compatto, quindi anche $F \cap f^{-1}(K_y)$ lo è, in quanto intersezione di un chiuso e di un compatto. f è continua e manda compatti in compatti, quindi $f(F \cap f^{-1}(K_y))$ è compatto. Ma $f(F \cap f^{-1}(K_y)) = f(F) \cap K_y$ è anche chiuso per il lemma 2. Sia ora $A_y \subseteq K_y$ un aperto contenente y e supponiamo $y \not\in f(F)$. Allora $y \in A_y \cap ({}^c(f(F) \cap K_y)) = A_y - f(F)$, che ne è un intorno aperto (intersezione di due aperti) contenuto in ${}^c(f(F))$. Abbiamo appena mostrato che ${}^c(f(F))$ è aperto, quindi f(F) è chiuso.

2