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Chapter 1

The interpolation theory

1.1 The Fourier transform

In this chapter we will introduce the interpolation theory. One of its consequences will
be the definition of the Fourier transform in Lp with p ∈ [1, 2].

Definition 1.1.1 – Fourier transform in L1

Given f ∈ L1(Rd), we define the Fourier transform of f as the function

f̂(ξ) :=

ˆ
Rd

f(x)e−2πiξ·xdx.

Theorem 1.1.2 – Minkowski’s theorem

Let us consider (X,µ), (Y, ν) σ-finite measurable spaces. Given f : X × Y → R
measurable, if 1 ≤ p ≤ +∞, it holds that∥∥∥∥ˆ

Y
fdν

∥∥∥∥
Lp
X

≤
ˆ
Y
∥f∥Lp

X
dµ.

Proof. By duality we have that

∥g∥Lp = sup
∥f∥Lq=1

|⟨f, g⟩|.

By direct computation we get∣∣∣∣ˆ
X

ˆ
Y
fgdνdµ

∣∣∣∣ ≤ ˆ
Y

ˆ
X
|f ||g|dµdν

≤
ˆ
Y
∥f∥Lp

x
∥g∥Lq

x
dν =

ˆ
Y
∥f∥Lp

x
dν.

Theorem 1.1.3 – Young’s inequality

Remembering f ∗ g(x) =
´
Rd f(x− y)g(y)dy it holds that, given f ∈ Lp and g ∈ L1:

∥f ∗ g∥Lp ≤ ∥f∥Lp∥g∥L1 .

5



6 CHAPTER 1. THE INTERPOLATION THEORY

Proposition 1.1.4 – Approximate Identity

Let us consider a family of functions Kn ∈ L1 ∀n ∈ N such that:

• For all n ∈ N
´
Kndx = 1.

• For all n ∈ N supn
´
|Kn| < +∞.

• For all δ > 0
´
|x|>δ |Kn|dx

n→+∞−→ 0.

Then for all 1 ≤ p < +∞ we have that

Kn ∗ f −→ f in Lp.

Proposition 1.1.5

We recall some basic fact about the Fourier transform, where we denote τhf(x) =
f(x− h) and δλf(x) = f

(
x
λ

)
.

1. f̂ is linear.

2. τ̂hf(ξ) = e−2πiξ·hf̂ .

3. δ̂λf(ξ) = λdf̂(λξ).

4. If f, g ∈ L1 then f̂ ∗ g = f̂ ĝ.

5. The function gλ(x) = e−πλ|x|2 is such that ĝλ(ξ) = λ−
d
2 e−

π|ξ|2
λ .

Proof. These are consequences of some direct computations. We do explicitly the last one:
for the dilatation formula it is sufficient to prove it for the case λ = 1:

ĝ(ξ) =

ˆ
Rd

e−π|x|2e−2πiξ·xdx

=

ˆ
Rd

e−π(x+iξ)2e−πξ2dx

= e−πξ2
ˆ
Rd

e−π(x+iξ)2dx︸ ︷︷ ︸
h(ξ)

= e−πξ2

indeed we have that

h′(ξ) =

ˆ
Rd

e−π(x+iξ)2(−2πi(x+ iξ))dx = i

ˆ
Rd

d

dx
[e−π(x+iξ)2 ]dx = 0.

Theorem 1.1.6 – Plancherel

If we have f ∈ L1 ∩ L2 then f̂ ∈ L2 and ∥f∥L2 = ∥f̂∥L2 . It follows that the map

f
F−→ f̂ has a unique extension to L2 and is a surjective isometry.
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Corollary 1.1.7 – Plancherel-Parseval Identity

For f, g ∈ L2 we have ˆ
fḡdx =

ˆ
f̂ ¯̂gdx.

Proof.

Definition 1.1.8 – Fourier transform in L2

Givena {fn} ∈ L1 ∩ L2 such that fn → f in L2, we define the Fourier transform of
f as

hatf := lim
n→∞

f̂n.

aa sequence exists because L1 ∩ L2 is dense in L2.

Osservazione 1.1.1
The limit surely exists because {fn} is a Cauchy sequence in L2 and, thanks to Plancherel-
Parseval identity, also {f̂n} is.

Definition 1.1.9 – Fourier antitrasform

We define the Fourier antitrasform as

f̌(x) = f∨(x) :=

ˆ
Rd

f(ξ)e2πiξ·x.

Theorem 1.1.10 – Inversion formula

If f ∈ L2, then f = (f̂)∨ almost everywhere.

Proof.
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1.2 Riesz-Thorin theorem

This first result of the interpolation theory will let us define the Fourier1 transform in
Lp, with 1 ≤ p ≤ 2.

In order to prove the theorem we first need to develop some results of complex analysis2

Theorem 1.2.1 – Hadamard Three lines theorem

Let us consider the strip Σ = {z ∈ C : 0 ≤ ℜ(z) ≤ 1} in the complex plane. Given
F such that:

• F is analytic on Σ̊

• F is bounded and continuous on Σ

• There exists M0,M1 such that

{
|F (it)| ≤M0

|F (1 + it)| ≤M1

for all t = ℜ(z)

It follows that:
|F (z)| ≤M1−t

0 M t
1−

Idea This result allows us to control F inside the strip, knowing only a control on its
boundary. ⌟

Proof.

We are now able to prove the Riesz-Thorin theorem:

Theorem 1.2.2 – Riesz-Thorin Theorem

Let p0 ≤ p1, q0 ≤ q1. Given a linear operator T where

T : Lp0 → Lq0

T : Lp1 → Lq1

such that there exist constants M0 and M1 which make valid the inequalities

∥Tf∥Lq0 ≤M0∥f∥Lp0

∥Tf∥Lq1 ≤M1∥f∥Lp1 .

Then, for all p and q of the form1
p = 1−t

p0
+ t

p1
1
q = 1−t

q0
+ t

q1

for t ∈ (0, 1), we have
∥Tf∥Lq ≤M1−t

0 M t
1∥f∥Lp .

Proof.

1As in L2 we will have a Cauchy sequence {fn} ⊆ L1 ∩ Lp which approximates f in Lp. Then {f̂n} will
be a Cauchy sequence and we will define f̂ as its limit.

2Historically people proved a lot of results exploiting complex analysis. The breakthrough will arrive
with the Calderón-Zygmund theory, which permitted to prove the results without using complex analysis.
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Corollary 1.2.3

Considering
F : L1 −→ L∞

f 7−→ f̂
and

F : L2 −→ L2

f 7−→ f̂
, we can define the

Fourier transform from Lp to Lq for all 1 ≤ p ≤ 2 ( q is the conjugate exponent of
p). Furthermore,

∥Ff∥Lq ≤ ∥f∥Lp .

Proof. It follows directly from Riesz-Thorin theorem: we know that

∥f̂∥L∞ ≤ ∥f∥L1

∥f̂∥L2 ≤ ∥f∥L2

The estimate follows because1−t
∞ + t

2 = 1
q

1−t
1 + t

2 = 1
p

⇒

1
q = t

2

1− t
2 = 1

p

⇒ 1 =
1

p
+

1

q

Osservazione 1.2.1
The estimate given by the corollary is called Hausdorff-Young inequality3: for 1 ≤ p ≤ 2
and 1

p + 1
q = 1,

∥û∥Lq ≤ ∥u∥Lp .

Corollary 1.2.4 – Young’s inequality

Let us consider p1, p2, r ∈ [1,+∞] such that 1
p1

+ 1
p2

= 1 + 1
r . It follows that

∀f ∈ Lp1(Rd) and ∀g ∈ Lp2(Rd)

∥f ∗ g(x)∥Lr(Rd) ≤ ∥f∥Lp1 (Rd) ∥g∥Lp2 (Rd) < +∞.

Proof. Let us consider p and its conjugate exponent p′. It is known that

∥f ∗ g∥Lp ≤ ∥f∥Lp∥g∥L1 and ∥f ∗ g∥L∞ ≤ ∥f∥Lp∥g∥Lp′ .

Given f ∈ Lp let us consider the operator T : g → f ∗ g. We have that

∥Tg∥L∞ ≤ ∥f∥Lp︸ ︷︷ ︸
=M0

∥g∥Lp′ and ∥Tg∥L1 ≤ ∥f∥Lp︸ ︷︷ ︸
=M1

∥g∥L1 .

For Riesz-Thorin we have that

∥Tg∥LR ≤ ∥f∥Lp︸ ︷︷ ︸
=M1−t

0 Mt
1

∥g∥Ls

where  1
R = 1−t

∞ + t
p

1
s = 1−t

p′ + t
1 = 1 + t−1

p

.

3One can see that the optimal constant in not 1!
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This means

1

s
+

1

p
= 1 +

1

R

hence the Young inequality is valid.

1.2.1 A generalisation of Riesz-Thorin theorem

We can generalise the Riesz-Thorin theorem to particular families of operators. First
let us give the following definition:

Definition 1.2.5 – Admissible family of operators

Let Σ = {z ∈ C : 0 ≤ ℜ(z) ≤ 1} be the strip in the complex plane and Tz a family
of operators parameterised on Σ. We say the family {Tz} is admissible if we have
the following conditions:

• The function
R : Σ −→ R

z 7−→
´
Y Tz(f)gdx

is analytic in Σ̊ and continuous in Σ, where f, g are finitely simple functions
considered on two σ-finite measure space.

• There exists a < π such that

log

(∣∣∣∣ˆ
Y
Tz(f)gdx

∣∣∣∣) ≤ C(f, g)ea|y|.

Lemma 1.2.6 – Hirshman lemma

If we have a function F which is analytic on Σ̊, continuous in Σ and a constant
a < π such that

sup
0≤x≤1

−∞<y<+∞

e−a|y| log(|F (x+ iy)|) < +∞.

Then

logx∈[0,1] |F (x)| ≤
1

2
sin(πx)

ˆ +∞

−∞

log(|F (iy)|)
cosh(πy)− cos(πx)

+
log(F |(1 + iy)|)

cosh(πy) + cos(πx)
dy.

Osservazione 1.2.2
We recall that

1

2

ˆ +∞

−∞

sin(πx)

cosh(πy)− cos(πx)
dy = 1− x and

1

2

ˆ +∞

−∞

sin(πx)

cosh(πy) + cos(πx)
= x.

Osservazione 1.2.3
If we suppose that both log(|F (iy)|) and log(|F (1 + iy)|) are constant or bounded we get
back |F (x)| ≤M1−x

0 Mx
1 , which recalls Riesz-Thorin.
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Theorem 1.2.7 – Interpolation of analytic family of operators

Let Tz be a family of operators such that{
∥Tiyf∥Lq0 ≤M0(y)∥f∥Lp0

∥T1+iyf∥Lq1 ≤M1(y)∥f∥Lp1

where there exists b < π such that

sup
−∞<y<+∞

e−b|y| log(Mj(y)) < +∞.

Then for all qt, pt of the form  1
pt

= 1−t
p0

+ t
p1

1
qt

= 1−t
q0

+ t
q1

where t ∈ (0, 1), we have that

∥Ttf∥Lqt ≤M(t)∥f∥Lpt

where

M(t) ≤ exp

(
sin(πt)

2

ˆ +∞

−∞

log(M0(y))

cosh(πy)− cos(πt)
+

log(M1(y))

cosh(πy) + cos(πt)
dt

)
.

Corollary 1.2.8 – Stein Theorem

Takea K0,K1, u0, u1 measurable functions. Suppose that{
∥K0T (f)∥Lq0 ≤M0∥fu0∥Lp0

∥K1T (f)∥Lq1 ≤M1∥fu1∥Lp1

Then for all qt, pt of the form  1
pt

= 1−t
p0

+ t
p1

1
qt

= 1−t
q0

+ t
q1

where t ∈ (0, 1), it holds

∥KtT (f)∥Lqt ≤M1−t
0 M t

1∥utf∥Lpt

where Kt = K1−t
0 Kt

1 and ut = u1−t
0 ut1.

aWith this theorem we can have an interpolation of operators with weighted condition.
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1.3 Marcinkiewitz theorem

Definition 1.3.1 – Distribution function

Given a measurable function f we define the distribution function of f as

df (α) = µ{x ∈ Rd : |f(x)| > α}.

Proposition 1.3.2 – Layer-Cake decomposition

For every p ∈ (0,+∞) it holds that

∥f∥pLp = p

ˆ +∞

0
αp−1df (α)dα.

Proof. By applying Fubini we get

p

ˆ +∞

0
αp−1df (α)dα = p

ˆ +∞

0
αp−1µ{|f | > α}dα

= p

ˆ +∞

0
αp−1

(ˆ
Rd

χ{|f |>α}(x)dx

)
dα

=

ˆ
Rd

(ˆ |f |

0
pαp−1dα

)
dx

=

ˆ
Rd

|f |pdx.

Definition 1.3.3 – Weak Lp spaces

For all p ∈ (0,+∞) we define the weak Lp space, also denoted by Lp,∞, as the set
of measurable function such that

∥f∥Lp,∞ = inf

{
c : ∀α > 0df (α) ≤

cp

αp

}
< +∞.

We have that Lp,∞ are quasi-normed spaces:

∥f + g∥Lp,∞ ≤ Cp(∥f∥Lp,∞ + ∥g∥Lp,∞)

where Cp = max(2, 2
1
p ).

Proposition 1.3.4

For all p ∈ (0,+∞)
∥f∥Lp,∞ ≤ ∥f∥Lp

hence Lp ⊂ Lp,+∞.

Proof.
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Corollary 1.3.5 – Chebychev Inequality

We also have the Chebychev inequality:

µ{|f | > λ} ≤
∥f∥pLp

λp
.

Example 1.3.6. We can see that the inclusion is strict:indeed there exist f ∈
Lp,∞\Lp. As example,we can consider the function f(x) = |x|−

n
p .

Definition 1.3.7

Let us consider an operator T . We say that T is

• Sublinear : if for all f, g

|T (f + g)| ≤ |T (f)|+ |T (g)|

• Strong (p, p)-continuous: if

∥Tf∥Lp ≤ c∥f∥Lp .

• Weak (p, p)-continuous: if

µ{|Tf | > λ} ≤ c
∥f∥pLp

λp
.

Osservazione 1.3.1
It is clear that if T is strong (p, p) continuous, then it is also weak (p, p): indeed by
Chebychev inequality we have

µ{|Tf | > λ} ≤
∥Tf∥pLp

λp
≤
cp∥f∥pLp

λp
.

Theorem 1.3.8 – Marcinkiewitz theorem

Let us consider p0, p1 such that 1 ≤ p0 < p1 < +∞. If T : Lp0 +Lp1 → {measurable
functions} is sublinear, (p0, p0)-weak and (p1, p1)-weak continuous, then T is (p, p)-
strong continuous for all p ∈ (p0, p1).
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Chapter 2

The Hardy-Littlewood-Sobolev
inequality

The inequality we want to see is the following1:
∥∥∥ 1
|x|α ∗ f

∥∥∥
Lq

≼ ∥f∥Lp .

Proposition 2.0.1

Given f ∈ C∞
C and Cα = π−

α
2 Γ
(
α
2

)
. If 0 ≤ α < d we have that

(Cα|ξ|−αf̂)∨ = Cd−α

ˆ
Rd

f(y)

|x− y|d−α
dy.

Proof. Let’s remember the definition of the Gamma function: Γ(x) =
´ +∞
0 e−ttx−1dt,

which has the property that Γ(x)Γ(1− x) = π
sin(πx) . We notice that if 0 < α < d then

Cα|ξ|−α =

ˆ +∞

0
e−π|ξ|2λλ

α
2
−1dλ =

ˆ ∞

0
e−t

[
t

π|ξ|2

]α
2
−1 1

π|ξ|2
dt

=

ˆ ∞

0
e−tt

α
2
−1π

α
2 |ξ|−α

= Γ

(
α

2

)
π

α
2 |ξ|−α.

Thanks to this equality we have that

(Cα|ξ|−αf̂)∨ =

ˆ
Rd

ˆ
Rd

ˆ ∞

0
e−π|ξ|2λλ

α
2
−1dλf(y)e−2πiξ·ydye2πiξ·xdξ

=

ˆ ∞

0

ˆ
Rd

λ
α
2
−1f(y)e−

π(x−y)2

λ λ−
d
2 dλdy

=

ˆ
Rd

f(y)

ˆ ∞

0
ε1−

α
2 e−π(x−y)2εε

d
2 ε−2dεdy

=

ˆ
Rd

f(y)

ˆ ∞

0
ε

d−α
2

−1e−π(x−y)2εdεdy

=

ˆ
Rd

Cd−α|x− y|−(d−α)dy

= Cd−α

ˆ
Rd

f(y)

|x− y|d−α
dy.

1by ≼ we mean that there is the inequality up to a constant, i.e. ≼≡≤ C.

15
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Osservazione 2.0.1
Since f ∈ C∞

C we have that f̂ is well defined, analytic and, for |ξ| → ∞, all of its derivatives

decay faster than the inverse of any polynomial2 in ξ, hence |ξ|−αf̂ ∈ L1. Since, a priori,´
Rd

f(y)
|x−y|d−αdy decays only as |x|α−d it is not in Lp for any p ≤ 2 but, if 0 < α < d

2 , thanks

to the Hardy-Littlewood-Sobolev inequality it is a L2 function, hence it admits Fourier
transform. This gives us the relation:

Cα|ξ|−αf̂ = Cd−α

̂(ˆ
Rd

f(y)

|x− y|d−α
dy

)
.

Idea We can study the Poisson equation: −∆u = f on R3 where f ∈ C∞
C . We remember

that3

∂̂u

∂xi
=

ˆ
∂u

∂xi
(x)e−2πiξ·xdx = 2πξi

ˆ
u(x)e−2πiξ·x(

∂̂u

∂xi

)2

= 4π2(ξi)
2

ˆ
u(x)e−2πiξ·α.

So if we apply the Fourier transform to the Poisson equation we get:

−∆̂u = f̂ ⇒ 4π2|ξ|2û = f̂ ⇒ û =
1

4π2
1

|ξ|2
f̂ .

Thanks to the previous formula, with α = 2 and d = 3 we have:

u =
1

4π2

(
1

|ξ|2
f̂

)∨
=

1

4π

ˆ
f(y)

|x− y|
dy

indeed: (
1

|ξ|2
f̂

)∨
=
C1

C2

ˆ
R3

f(y)

|x− y|
dy

=
√
π
Γ(12)

Γ(1)

ˆ
R3

f(y)

|x− y|
dy

=
√
πΓ

(
1

2

)ˆ
R3

f(y)

|x− y|
dy

=
√
π

√
π

sin(π2 )

ˆ
R3

f(y)

|x− y|
dy

= π

ˆ
R3

f(y)

|x− y|
dy.

⌟

2This type of function will be really useful.
3you can think that u has compact support.
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2.1 The maximal function

Definition 2.1.1 – Centered maximal function

Given f ∈ L1
loc(Rd) we define the centered maximal function Mf as

Mf(x) = sup
δ>0

AvgB(x,δ)|f |

= sup
δ>0

1

ωdδd

ˆ
|y|<δ

|f(x− y)|dy.

Example 2.1.2. Let us compute Mf where f = χ[a,b](x). We start by noticing
that, if x > b, then having for δ > 0 I = (x− δ, x+ δ) it holds that

1

2δ

ˆ
I
|f(y)|dy =

δ − (x− b)

2δ
.

If we consider δ = x− a then

Mf(x) =


b−a

2|x−a| x ≤ a

1 a < x < b
b−a

2|x−b| x ≥ b

.

Since Mf ∼ 1
|x| then Mf /∈ L1.

Proposition 2.1.3

Given f ∈ L1
loc(Rd) if Mf ∈ L1(Rd) then f ≡ 0.

Proof. It is clear that B(0, R) ⊆ B(x, ∥x∥ + R) for all x ∈ Rd and R ∈ R+. So for all
R ∈ R+ it holds:

Mf(x) ≥ 1

µ(B(x, ∥x∥+R))

ˆ
B(x,∥x∥+R)

|f(y)|dy

≥ 1

ωd(∥x∥+R)d

ˆ
B(0,R)

|f(y)|dy.

This means that if Mf ∈ L1 then
´
B(0,R) |f(y)|dy = 0 which is f = 0 a.e.

Osservazione 2.1.1
It holds that {Mf > λ} ⊆ Rd is an open subset, i.e. Mf is lower semi continuos.

Definition 2.1.4 – Non centered maximal function

We have

M̃f (x) = sup
δ>0

|y−x|<δ

AvgB(y,δ)|f |

= sup
δ>0

|y−x|<δ

1

µ(B(x, r))

ˆ
B(x,r)

|f(y)|dy.
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Osservazione 2.1.2
It holds that {M̃f > λ} ⊆ Rd is an open subset, i.e. M̃f is lower semi continuos.

Proof. If we consider x ∈ {M̃f > λ}, there exists y such that

1

B(y,R)

ˆ
B(y,R)

|f(z)|dz > λ ∀x ∈ B(y,R).

This means that B(y,R) ⊆ {M̃f > λ}, hence the thesis.

Proposition 2.1.5

Given f we have
Mf ≤ M̃f ≤ 2dMf.

Proof. It is clear that Mf ≤ M̃f . Let see M̃f ≤ 2dMf . We start by seeing that, if
x ∈ B(y,R) then B(y,R) ⊆ B(x, 2R). It follows that:

1

µ(B(y,R))

ˆ
B(y,R)

|f(z)|dz ≤ 1

µ(B(x,R))

ˆ
B(x,2R)

|f(z)|dz

=
2d

µ(B(x, 2R))

ˆ
B(x,2R)

|f(z)|dz ≤ 2dMf.

Corollary 2.1.6

We have that

µ{Mf < λ} ≤ c
∥f∥L1

λ
⇐⇒ µ{M̃f < λ} ≤ c̃

∥f∥L1

λ
.

Lemma 2.1.7 – Vitali covering lemma

Let {B1, . . . , Bk} be a finite collection of balls in Rd. THen there exists a subset
{B̃j1 , . . . , B̃jl of pointwise disjoint balls such that

k⋃
i=1

Bi ⊆
l⋃

r=1

3B̃jr .

Furthermore

µ

 l⋃
r=1

B̃jr

 =
l∑

r=1

µ(B̃jr) ≥
1

3d
µ

 k⋃
i=1

Bi

 .

Proof. Omitted.

Theorem 2.1.8 – Hardy-Littlewood

It holds that 1 ≤ p ≤ +∞
∥Mf∥Lp ≤ Cp∥f∥Lp .
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Proof. The thesis will follow thanks to Marcienkiewitz theorem. It is clear that ∥Mf∥L∞ ≤
∥f∥L∞ . We now want a (1, 1)-weak estimate.

Let us call Eλ = {M̃f > λ}. The (1, 1)-weak continuity will follow by an estimate of
µ(Eλ). Since it is a measurable set we can findK ⊆ Eλ compact such that µ(K)+ε = µ(Eλ)
and ∀x ∈ K ∃Bx such that

1

µ(Bx)

ˆ
Bx

|f(z)|dz > λ.

Since K is compact we can find Bxi such that K =
n⋃

i=1
Bxi . For the Vitali covering lemma

we also have
K ⊆ ∪Bi ⊆ 3B̃j

where B̃j are disjoint. It follows that:

µ(K) ≤ µ

⋃
i

Bi

 ≤ 3d
∑
j

∑
µ(B̃j)

≤
∑
j

3d
1

λ

ˆ
B̃j

f(y)dy

≤ 3d

λ

ˆ
∪jB̃j

f(y)dy

≤ 3d

λ
∥f∥L1(Rd).

Definition 2.1.9 – Maximal operator

If we have a family of linear operators {Tn} we define the maximal operator associeted
to the family as

T ∗f(x) := sup
n

|Tnf(x)|.

Lemma 2.1.10

Let {Tn} be a family of linear operators, such that for each n

Tn : Lp → {maximal functions}

such that T ∗ is of weak type (p, p). Then the following set is closed:

C = {f ∈ Lp such that lim
n→+∞

Tnf = f almost every x}.

Proof. Since Lp is a metric space we have that

C closed ⇐⇒ C sequentially closed.

We want to prove that if fk ∈ C and fk → f then f ∈ C. Given ε > 0 we have ∥fk−f∥ ≤ ε.
Fix λ we want to prove that there exists c ∈ R+ such that:

µ

{
x : lim sup

n→+∞
|Tnf − f | > λ

}
≤ cε.
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Idea The following argument is really useful and many proofs use this basic idea: if we

have that x+ y + z > λ then, worst case scenario, we surely have


x > λ

3

y > λ
3

z > λ
3

. ⌟

Thanks to the linearity of T we can write:

µ

{
x : lim sup

n→+∞
|Tnf − f | > λ

}
= µ

{
x : lim sup

n→+∞
|Tnf − Tnfk + Tnfk − fk + fk − f | > λ

}

≤ µ

{
x : lim sup

n→+∞
|Tn(f − fk)| >

λ

3

}
+

+ µ

{
x : lim sup

n→+∞
|Tnfk − fk| >

λ

3

}
+

+ µ

{
x : lim sup

n→+∞
|fk − f | > λ

3

}

= A+B + C ≼
εp

λp

where the last estimate follows because:

A ≤ µ

{
x : |T ∗(f − fk)| >

λ

3

}
≤ C

∥f − fk∥pLp

λp

≤ k
εp

λp
thanks to the (p− p)-weak continuity

B = 0 having fk ∈ C

C ≤ k
εp

λp
thanks to the Cebychev inequality

Corollary 2.1.11 – Lebesgue differentiation theorem

If f ∈ L1 then

lim
r→0

1

µ(B(x, r))

ˆ
B(x,r)

f(y)dy = f(x)

for almost every x.

Proof. Let us define the family of operators Tr where

Trf(x) =

 
B(x,r)

f(y)dy

and consider the maximal operator T ∗f(x). We notice that T ∗ is (1, 1)-weak, indeed∣∣∣∣∣
ˆ
B(x,r)

f(y)dy

∣∣∣∣∣ ≤
ˆ
B(x,r)

|f(y)|dy
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which means that T ∗f(x) ≤Mf(x). Having that Mf is (1, 1)-weak, also T ∗f is. For the
previous lemma the following is a closed set of L1:

{f ∈ L1 : lim
r→0

Trf = f a.e.}.

We conclude because for f ∈ C∞
C it is clear that lim

r→0
Trf = f and they are a dense subset

of L1.

Proposition 2.1.12

Given K ∈ L1 such that K(x) = K(∥x∥) is a radial, non-increasing function we
have that

|K ∗ f(x)| ≤ ∥K∥L1Mf(x).

Proof. Let us suppose K ∈ C∞
C , then4:

|K ∗ f | =
∣∣∣∣ˆ

Rd

K(y)f(x− y)dy

∣∣∣∣
=

∣∣∣∣∣∣
ˆ +∞

0
K(r)

(ˆ
Σr

f(x− y)dσr

)
dr

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣
−
ˆ +∞

0
K ′(r)


ˆ r

0

ˆ
Σs

f(x− y)dσsds︸ ︷︷ ︸´
B(x,r) f(y)dy

 dr

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣−
ˆ +∞

0
K ′(r)

µ(B(x, r))

µ(B(x, r))

ˆ
B(x,r)

f(y)dydr

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ +∞

0
−K ′(r)µ(B(x, r))Mf(x)dr

∣∣∣∣∣
≤Mf

∣∣∣∣∣
ˆ +∞

0
−K ′(r)µ(B(x, r))dr

∣∣∣∣∣
=Mf

∣∣∣∣∣∣
ˆ +∞

0
−K ′(r)

ˆ r

0

(ˆ
Σs

1dσs

)
dsdr

∣∣∣∣∣∣
≤Mf

ˆ ∞

0
|K(r)|

ˆ
Σr

dσrdr

=Mf∥K∥L1

4It is important to have −K′(r) > 0 so that we can consider Mf without any problem.
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Corollary 2.1.13

If we consider Kε(x) =
1
εd
K
(
x
ε

)
with K ∈ L1, non increasing and radial. Then K∗

is (1, 1)-weak.

Proof. We have ∀ε
|Kε ∗ f(x)| ≤ ∥Kε∥L1Mf ≤ ∥K∥L1Mf.

This implies

K∗f = sup
ε

|Kεf | ≤ ∥K∥L1Mf.

Corollary 2.1.14

Assume
´
Kdx = 1 then ∀f ∈ Lp with 1 ≤ p < +∞ we have

Kε ∗ f
ε→0−→ f a.e.

Proof. Let us consider the maximal operator K∗f = supε>0 |Kε ∗ f |. Let us see that it is
(p− p)-weak:

µ{Kff > λ} ≤ µ{∥K∥L1Mf > λ} ≤
c∥f∥pLp∥K∥p

L1

λp
.

We conclude thanks to the lemma above.

Osservazione 2.1.3
The previous result still holds, in a certain way, even if K which is not radial nor non-
incresing: it is sufficient to consider a radially symmetric majorant, i.e. a function K0 such
that K0 is radially simmetric, non increasing and

|K(x)| ≤ |K0(x)|.

Using the result on K0 we get

|K ∗ f | ≤ ∥K0∥L1Mf(x).

2.1.1 Applications

The Lemma (2.1) has some non-obvious consequences in the theory of PDEs. Let us
study the case of the heat equation and Schrödinger’s equation.

Definition 2.1.15 – Heat Kernel

Given the heat equation with initial datum f ∈ L2(I), i.e.:{
∂tu = ∆u

u(x) = f

we say u is a solution if
u = Ht ∗ f,
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where we definite the heat kernel as

Ht =
1

(4πt)
d
2

e
−π|x|2

4πt .

Osservazione 2.1.4
We can show that a solution exists using the Fourier transform:{

∂tû = −4π2|ξ|2û
û(ξ, ·) = f̂

.

This implies û = e−4π2|ξ|2tf̂ and so5

u = (e−4π2|ξ|2t)∨ ∗ f

=
1

(4πt)
d
2

e
−π|x|2

4πt ∗ f

= Ht ∗ f.

Example 2.1.16. If u is the solution of the heat equation with initial datum
f ∈ L2(Rd) then Ht ∗ f → f a.e.x.

Proof. We can see that ∥Ht∥L1 = ∥H1∥L1 = 1, which means that Ht is scaling invariant.

We notice also that supt
´
|Ht| and ∀δ > 0

´
|x|>δ |Ht|

t→0−→ 0. Thus Ht is an approximate
identity, i.e.

Ht ∗ f −→ f in L2.

The pointwise convergence follows because

sup |Ht ∗ f | ≤Mf(x)

hence C = {f ∈ L2 such that limt→0Htf = f almost every x} is closed. The state-
ment is clearly true for the C∞

C which are a dense, so the thesis follows for all f ∈ L2.

Definition 2.1.17 – Schrödinger’s kernel

Given the Schrödinger’s equation with initial datum g ∈ L2(I), i.e.:{
∂tu = i∆u

u(x) = g

we say u is a solution if
u = St ∗ g,

where we definite the Schrödinger’s kernel as

St =
1

(4πt)
d
2

e
−π|x|2

4πt .

5We consider initial datum f ∈ L2, so that
ˇ̂
f = f .
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Osservazione 2.1.5
We can show that a solution exists using the Fourier transform:{

∂tû = −4π2i|ξ|2û
û(ξ, ·) = ĝ

so û = e−4π2i|ξ|2tĝ and so

u = (e−4π2i|ξ|2t)∨ ∗ g

=
1

(4πti)
d
2

e
π|x|2
4t ∗ g

= St ∗ g.

Notice that in this case nor ee
−4π2i|ξ|2t

or u are in L1: the equalities follow by direct
computations.

Example 2.1.18. If u is the solution of the Schrödinger’s equation with initial
datum g ∈ L2(Rd) it is not true in general that St ∗ g → g a.e.x.

Proof. The counterexample in d = 1 to this was given by König-Dalbert in 1984. If we add
some stronger hypotesis, such as6 g ∈ Hs(Rd) with s ≥ 1

4 , thanks to Carleson theorem, we
get that St ∗ g → g a.e.x.
Another difference to the heat equation is the following: if we write

St ∗ g := eit∆g

then we have that this is a semigroup action on the initial datum, which is also an isometry7

on L2, i.e.
∥eit∆g∥L2 = ∥g∥L2 .

It is also true that

∥eit∆g∥L∞ ≲
1

t
d
2

∥g∥L1 .

By the Riesz-Thorin theorem we get the dispersitive estimate, i.e.:

∥eit∆g∥Lq ≲
1

t
d
2
θ
∥g∥Lp .

The exponents p, q given by the theorem are such that1
p = 1

2 + θ
2

1
q = 1

2 − θ
2

⇒ 1

p
+

1

q
= 1.

where it is important that p ∈ [1, 2] and q ∈ [2,+∞]. Since θ = 2
p − 1 we get8

∥eit∆g∥Lp′ ≲
1

t
d
2
θ
∥g∥Lp

=
1

t
d
p
− d

2

∥g∥Lp

6by Hs we denote the fractional Sobolev space.
7This is not true for the heat equation
8the exponent of t is positive because p ≤ 2.
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2.2 Hardy-Littlewood-Sobolev inequality

Prior to statement and proof of the Hardy- Littlewood-Sobolev inequality, we need the
following:

Definition 2.2.1 – Volume and surface of balls

νd = µ({x∥Rd ≤ 1} and ωd−1 = surface area (ossia ∥x∥Rd = 1).

Proposition 2.2.2

For every d it holds that

ωd−1 =
2π

d
2

Γ(d2)
and νd =

ωd−1

d
.

Proof. It is an easy computation9:

π
d
2 =

ˆ
Rd

e−|x|2dx = ωd−1

ˆ ∞

0
e−r2rd−1dr

=
ωd−1

2

ˆ ∞

0
e−tt

d−1
2 t−

1
2dt

=
ωd−1

2
Γ

(
d

2

)
.

By definition we have

νd =

ˆ
B(0,1)

1dx =

ˆ 1

0
ωd−1r

d−1dr =
ωd−1

d
.

Definition 2.2.3

We define the multiplicative operator |D|s such that:

|̂D|sf = (2π|ξ|)sf̂

This meansa, if we are allowed, that

|D|sf = (2π|ξ|sf̂)∨.
aRemembering that ∂̂xif = 2πiξif̂ , we see, in the sense of distributions, that |D|2 is a derivative

operator.

Theorem 2.2.4 – Hardy-Littlewood-Sobolev inequality

For 0 < γ < d and 1 + 1
q = 1

p + γ
d , with 1 < p, q <∞ we have∥∥∥∥ 1

|x|γ
∗ f
∥∥∥∥
Lq

≤ C∥f∥Lp (HLS)

9We used the following change of variables:r2 = t, dr = 1
2
t−

1
2 dt.
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Osservazione 2.2.1
It is a generalization of Young inequality. Thanks to Example (1.3.6) we have that
|x|−λ ∈ Lp,∞ for p = d

λ , indeed

µ

{
1

|x|γ
> λ

}
= µ

{
1

λ
> |x|γ

}
= νd

1

λ
d
2

.

It follows that ∥∥∥∥ 1

|x|γ
∗ f
∥∥∥∥
Lq

≤ C

∥∥∥∥ 1

|x|γ

∥∥∥∥
LR,∞

∥f∥Lp

which is like Young inequality with the exponents being

1 +
1

p
=

1

q
+
λ

d
.

Osservazione 2.2.2
Having (|ξ|−kf̂)∨ = c

´ f(y)
|x−y|d−k it holds that

|D|−kf =
1

|x|
d−k
γ

∗ f.

Hence (HLS) becomes:
∥|D|γ−df∥Lq ≲ ∥f∥Lp .

Osservazione 2.2.3
The exponents p, q given in the statement of (HLS) are the only one possible: we see
this thanks to a scaling argument. If the inequality is true ∀f ∈ Lp then it true also for
fλ = f(xλ), i.e.:

λ⌣∥|D|γ−df∥Lq = ∥|D|γ−dfλ∥Lq ≲ ∥fλ∥Lp = λ
d
p ∥f∥Lp .

We need to understand what ⌣ is: remembering ∂xifλ(x) =
1
λ∂xif(

x
λ) we have that

|D|αfλ(x) = |λ|−α|D|αf
(
x

λ

)
.

This means that
λ
−(γ−d)+ d

q ∥f∥Lp ≤ λ
d
p ∥f∥Lp

which implies

d− γ +
d

q
=
d

p
.

We are finally ready to prove HLS.

Proof of HLS inequality.

1

|x|γ
∗ f =

ˆ
1

|y|γ
f(x− y)dy

=

ˆ
|y|≤R

1

|y|γ
f(x− y)dy +

ˆ
|y|>R

1

|y|γ
f(x− y)dy

= f ∗
(

1

|y|γ
χBR

)
+

ˆ
|y|>R

1

|y|γ
f(x− y)dy.
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We now proceed to estimate separately the two integrals. The first one is an easy compu-
tation10: ∣∣∣∣f ∗ 1

|y|γ
χBR

∣∣∣∣ ≤Mf∥ 1

|y|γ
χBR

∥L1

=Mf

ˆ
BR

1

|y|γ
dy

=Mfωd−1

ˆ R

0

rd−1

rγ
dr =

ωd−1

d− γ
Rd−γ

≼Mf(x)Rd−γ .

For the second integral we see that11:

ˆ
|y|>R

1

|y|γ
f(x− y)dy ≤ ∥f∥Lp

∥∥∥∥ 1

|y|γ
χBC

R

∥∥∥∥
Lp′

= ∥f∥Lp

(
ωd−1

ˆ ∞

R

rd−1

rγp′
dr

) 1
p′

∼ ∥f∥LpR
d−γp′

p′

where we remember that, having q ̸= +∞, the is finite12 since

1 < 1 +
1

q
=

1

p
+
γ

d
⇒ γ

d
>

1

p′
.

We proved we have the following estimate:∣∣∣∣ 1

| · |γ
∗ f(x)

∣∣∣∣ ≲MfRd−γ + ∥f∥LpR
d
p′−γ

Having different exponents we want to find R such that MfRd−γ = ∥f∥LpR
d
p′−γ

. It is
clear that

Mf

∥f∥Lp
= R

d
p′−d

= R
− d

p ⇒ R =

(
Mf

∥f∥Lp

)− p
d

.

With this choice of R we have:∣∣∣∣ 1

| · |γ
∗ f(x)

∣∣∣∣ ≲ ∥f∥
1− p

q

Lp Mf(x)
p
q .

which implies that its Lq norm is:∥∥∥∥ 1

| · |γ
∗ f(x)

∥∥∥∥
Lq

≲ ∥f∥
1− p

q

Lp ∥Mf∥
p
q

Lp .

The Hardy-Littlewood-Sobolev inequality follows sinche Mf is (p, p) weak, hence∥∥∥∥ 1

| · |γ
∗ f(x)

∥∥∥∥
Lq

≲ ∥f∥
1− p

q

Lp ∥Mf∥
p
q

Lp

≼ ∥f∥
1− p

q

Lp ∥f∥
p
q

Lp

≼ ∥f∥Lp .

We observe that this proof gives a better estimate than the HLS since we have a control
with the maximal function.

10We stress that it is pointwise
11We notice that R is elevated to a negative power.
12we need to have d− 1− γp′ < −1.
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2.2.1 Applications

Thanks to the Hardy-Littlewood-Sobolev inequality we can see if, given the energy E to a
problem, we have coercivity. By this term we mean the possibility that, if ∥∇u∥Lp → +∞
then E(u) → +∞.

Example 2.2.5. Given the problem −∆ϕ = |u|2, which energy is

E(u) =

¨
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy

there exists p such that |E(u)| ≼ ∥u∥Lp .

Proof. If we are in R3 we know the solution to this problem is

Φ =
1

4π

ˆ
|u(y)|2

|x− y|
dy.

Remembering that
´ |u(x)|2|u(y)|2

|x−y| =
(

1
x ∗ |u|2

)
|u|2 then thanks to HLS we see that p has

to be such that

1 +
1

p′
=

1

p
+

1

3
⇒ 2− 1

p
=

1

p
+

1

3
⇒ p =

6

5
.

This means that

E(u) =

¨
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy =

ˆ
R3

(
1

x
∗ |u|2

)
|u|2dx

≤ ∥u2∥Lp

∥∥∥∥1x ∗ |u|2
∥∥∥∥
Lp′

≼ ∥u∥2Lp∥u∥2Lp

= ∥u2∥2
L

6
5
= ∥u∥4

L
12
5
.

The fact that there is a fourth power should not shock us, as a matter of fact we could
immediatly see that, for homogeneity of HLS, we need to have something like ∥u∥4Lp ,
whichever p is. In conclusion we have that, for p = 12

5 we have

|E(u)| ≼ ∥u∥Lp .

Example 2.2.6. What if we consider the same problem for any dimension d? The
energy in this case is: ¨

Rd×Rd

|u(x)|2|u(y)|2

|x− y|d−2
dxdy.

Proof. In this case the solution is, where C is a constant we do not care about, the following:

Φ = C

ˆ
|u(y)|2

|x− y|d−2
dy.
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The exponent given by HLS is

1 +
1

p′
=

1

p
+
d− 2

d
⇒ p =

2d

d+ 2
.

So we have ¨
Rd×Rd

|u(x)|2|u(y)|2

|x− y|d−2
dxdy ≤ ∥u2∥Lp∥u2∥Lp′

≲ ∥u2∥2
L

2d
d+2

= ∥u∥4
L

4d
d+2

.

We now see whether or not we have coercivity : in order to this we need the Sobolev
inequality, stated in 3.1.3, which tells us that in R3 we have ∥u∥L6 ≼ ∥∇u∥L2 . In general,
if we have an energy E we can write E = K + U where K is the kinetic energy and U is
the potential one. In this case we want to study

inf
∥u∥L2=1

u∈H1

1

2

{ˆ
|∇u|2 − 1

4

¨
|u(x)|2|u(y)|2

|x− y|
dxdy > +∞

}
.

In this case we have13 K =
´
|∇u|2 and U = 1

4

˜ |u(x)|2|u(y)|2
|x−y| dxdy. We can see that:

U ≲ ∥u∥4
L

12
5
≲ ∥u∥αL2∥u∥βL6 ≲ ∥u∥αL2∥∇u∥βL2 .

We have coercivity if β < 2. Indeed by Hölder we have

∥u∥Lp ≤ ∥u∥θL2∥u∥1−θ
L6 .

where
1

p
=
θ

2
+

1− θ

6
=

3θ + 1− θ

6
⇒ 2θ

6
=

1

p
− 1

6
=

6− p

6p
⇒ θ =

6− p

2p
.

If p = 12
5 we get θ = 3

4 , hence
U ≲ ∥u∥3L2∥∇u∥L2 .

Example 2.2.7. Given the problema i∂tu = −∆u− 1
|x|u, prove that

inf
∥u∥L2=1

1

2

ˆ
|∇u|2dx− 1

2

ˆ
|u|2

|x|
dx > −∞.

aIt arises from quantum mechanics

Proof. Using the Hardy inequality (3.1.1):(ˆ
Rd

|u|2

|x|2
dx

) 1
2

≤ 2

d− 2
∥∇u∥L2

we have inf > −∞.

13Physically this are the kinetic and potential energy associated to an electric charge
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Chapter 3

The Hilbert and Riesz Transform

3.1 Schwartz class and Distributions

Thanks to Plancherel equality and Riesz-Thorin theorem we are able to define the
Fourier transform for fuctions f ∈ Lp with 1 ≤ p ≤ 2. The aim of this chapter is to
generalize this definition, in order to have a Fourier transform for more objects, which will
be the tempered distributions.

3.1.1 Schwartz class of functions

The idea will be, given some linear operator T acting on a class of function S, to define
T̂ such that

⟨T̂ , u⟩ = ⟨T, û⟩.
It is immediate that we need to define the class of function S in order that, if u ∈ S, also
û ∈ S.

Let us now fix some notation1: given x ∈ Rd and α = (α1, . . . , αd) a multiindex, where
αi ≥ 0 ∀i and |α| =

∑d
i=1 αi, we write

xα = xα1
1 . . . xαd

d

∂αf = ∂α1
x1
. . . ∂αd

xd
f

It is immediate to observe that:

Proposition 3.1.1

For every x ∈ Rd and α multiindex the following hold:

1.
|x|α ≤ Cd,α|x||α|.

2. For all k ∈ Z+

|x|k ≤ Ck,d

∑
|α|=k

|xα|

Proof. This inequalities follow in the same way: let us considere the following maps:

ξ1 : Sd−1 −→ R
x 7−→ |xα| .

1we will use the same notation as in Grafakos

31
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ξ2 : Sd−1 −→ R
x 7−→

∑
|α|=k

|xα| .

Both of them have the minimum which is greater then 0 for costruction, by omogeneity we
get the thesis.

Osservazione 3.1.1
In the first inequality, it is not possible to have an inequality where we have two different
multiindexes α, β:

|xα| ≼ |x||β|.

In order to see this it is sufficient to do a rescaling argument : if it true for x it should also
hold for λx, where λ ∈ R.

Proposition 3.1.2 – Leibnitz rule

For all f, g ∈ Rd we have

∂α(fg) =
∑
β≤α

(
α1

β1

)
. . .

(
αd

βd

)
∂βf∂α−βg

where β ≤ α if βj ≤ αj ∀1 ≤ j ≤ d.

Definition 3.1.3 – Schwartz function

f ∈ C∞ is in the Schwartz class S if ∀α, β multiindex we have

ρα,β(f) = sup
x∈Rd

|xα∂βf | < +∞.

This will be a class of test functions.

Osservazione 3.1.2
We will often use this equivalent definition: given f ∈ C∞ the following holds:

f ∈ S ⇐⇒ |∂βf(x)| ≤ Cβ,N
1

⌊1 + |x|⌋N
∀β∀n.

This means that Schwartz functions decay faster then every polynomial.

Definition 3.1.4 – Convergence in Schwartz’s class

We say that given fn ∈ S, f ∈ S then fn
S−→ f if ∀α, β

ρα,β(fn − f)
n→∞−→ 0.

Proposition 3.1.5

For p ∈ [1,+∞] if fn
S−→ f thena fn

Lp

−→ f and

∥∂βf∥Lp ≤ Cd,p

∑
|α|≤

⌊
d+1
p

⌋
+1

ρα,β(f).
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aThis implies that the convergence in S is stronger than convergence in all Lp.

Proof. Let us prove that, given the estimate, than the S-convergence implies the Lp-
convergence:

∥fn − f∥Lp ≼
∑

|α|≤
⌊
d+1
p

⌋
+1

ρα,β(fn − f) → 0

because is a finite sum of numbers going to 0.
Let us prove the estimate:

∥∂βf∥Lp =

(ˆ
Rd

|∂βf |pdx
) 1

p

=

(ˆ
|x|<1

|∂βf |pdx+

ˆ
|x|≥1

|∂βf |pdx

) 1
p

≤

νd
(
sup
x∈Rd

|∂βf |

)p

+ C sup
x≥1

|x|d+1|∂βf |p
 1

p

≤

νd
(
sup
x∈Rd

|∂βf |

)p

+ C sup
x≥1

|x|
⌊
d+1
p

⌋
+1|∂βf |p

 1
p

≼ ρα+β(f) +
∑

|α|=
⌊
d+1
p

⌋
+1

ρα,β(f)

where the last inequality follows from the property of multindexes and where we also used
the fact that

ˆ
|x|≥1

|∂βf |pdx =

ˆ
|x|≥1

|x|d+1|x|−d−1|∂βf |pdx ≤ C sup
x≥1

|x|d+1|∂βf |p.

We can see that the S class is closed under many operations such as convolution and
fourier transform.

Proposition 3.1.6

Given f, g ∈ S we have that f ∗ g ∈ S.

Proof. For any x, y ∈ Rd and N ∈ N we have:

1

(1 + |x− y|)N
≤ (1 + |y|)N

(1 + |x|)N
.

It is sufficient to prove this for N = 1 and then it will follow for induction. When N = 1
we can see that

1 + |x| = 1 + |x− y + y| ≤ 1 + |x− y|+ |y| ≤ (1 + |x− y|)(1 + |y|).
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If we now compute f ∗ g(x) we have:

|f ∗ g| =
∣∣∣∣ˆ f(x− y)g(y)dy

∣∣∣∣
≤
ˆ

1

(1 + |x− y|)N
dy

(1 + |y|)N+d+1

≼
1

(1 + |x|)N

ˆ
(1 + |y|)N

(1 + |y|)N+d+1
dy

=
1

(1 + |x|)N

ˆ
1

(1 + |y|)d+1
< +∞.

We now have to check all the derivatives ∂β(f ∗ g), but this is easy by observing that:

∂β(f ∗ g) = ∂βf ∗ g.

Lemma 3.1.7

For any f ∈ S and any α multiindex we have:

1. ∂̂αf = (2πiξ)αf̂(ξ)

2. ∂αf̂(ξ) = ̂(−2πix)αf(ξ)

Proof. For semplicity we will assume we only have one derivative, i.e. α = (1, 0, . . . , 0).
Proof of 1):

∂̂αf =

ˆ
Rd

∂αf(x)e−2πiξ·xdx

= (−1)|α|
ˆ
(−2πiξ)αf(x)e−2πiξ·xdx

= (2πiξ)αf̂(ξ).

The integration by parts is possible because, considering R→ +∞, the following holds:ˆ
BR

∂x1fe
−2πiξ·xdx = −

ˆ
BR

f(−2πiξ1)e
−2πiξ·xdx+

ˆ
∂BR

fe−2πiξ·x)ν1dσ

Idea This trick is quite common for Schwartz functions which decay really fast. We want
to see that the second term goes to zero so it’s done: it is quite obvious because f decays
faster then any polynomial. ⌟

Proof of 2):

∂ξ1 f̂(ξ) = lim
h→0

f̂(ξ + he1)− f̂(ξ)

h

= lim
h→0

1

h

ˆ
f(x)

[
e−2πi(ξ+he1)·x − e−2πiξ·x

]
dx

= lim
h→0

ˆ
f(x)e−2πiξ·x e

−2πi(hx1)−1

h

=

ˆ
f(x) lim()

= ̂(−2πix)αf.
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where the limit passed inside because

e−2πiξ·x e
−2πi(hx1)−1

h
− (−2πix1)e

−2πiξ·x = H(x)

needs to go to 0 in L1. We need to see |H(x)| ≤ C|x| in order to apply dominance
convergence, which follows from

sup |g′| ≥
∣∣∣∣g(h)− g(0)

h

∣∣∣∣ .

Theorem 3.1.8

If f ∈ S then f̂ ∈ S.

Proof. We want to see that xα∂βf in L∞ for any α, β. The idea is to see that something
like this holds:

∥xα∂β f̂∥L∞ = ∥⌣̂∥L∞ ≤ ∥⌣ ∥L1

Let us understand what the ⌣ is: by the previous formulas we have

∥xα∂β f̂∥L∞ = ∥ ̂∂α(xβf)∥L∞
(2π)|β|

2π|α|
≤ C∥∂α(xβf)∥L1 < +∞.

Example 3.1.9. For d = 1 let g = χ[0,b](x). We want to compute ĝ.

ĝ(ξ) =

ˆ b

a
g(x)e−2πiξxdx =

[
e−2πiξx

−2πiξ

]b
a

=
e−2πiξa − ie−2πiξb

2πiξ
.

Example 3.1.10. For any d let us consider g =
∏d

i=1 χ[ai,bi](xi). So

ĝ(ξ) =

d∏
i=1

[
e−2πiξiai − ie−2πiξibi

2πiξi

]
.

Is it true that ĝ goes like 1
|x|? We see that if ξ ∈ Rd\{0} then there exists i0 such

that |ξi0 | >
|ξ|√
d
. If this were not the case we would have

|ξ|2 =
∑

x2i <
∑ |ξ|2

d
= |ξ|2

which is absurd. So in the previous computation we have:

|ĝ(ξ)| ≤ 2

2π

√
d

|ξ|
∏
i ̸=i0

(bi − ai)

where we used the Lagrange’s estimate to write e−2πiξiai−ie−2πiξibi

2πiξi
≤ (bi − ai).
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Theorem 3.1.11

If f ∈ L1 we have f̂(ξ) → 0 for |ξ| → +∞.

Proof. We know that for each f ∈ L1 there exist g simple function such that, for ε > 0,
∥f − g∥L1 ≤ ε

2 . We see that

|f̂(ξ)| = |f̂(ξ)− ĝ(ξ) + ĝ(ξ)| ≤ |f̂(ξ)− ĝ(ξ)|+ |ĝ(ξ)| ≤ ∥f − g∥L1 +
C

|ξ|
.

The thesis follows because for |ξ| > M0 we have |ĝ| ≤ ε
2 , which gives |f̂(ξ)| ≤ ε.

Proposition 3.1.12 – Hardy inequality

Given d ≥ 3 for all f ∈ C∞
C (Rd\{0}) we have:(ˆ
Rd

|f(x)|2

|x|2
dx

) 1
2

≤ 2

d− 2
∥∇f∥L2 .

Proof of Hardy. The best costant is never achieved (non capito come si vede)
The reason why we ask f ∈ C∞(Rd\{0}) is that we dont want problems when integrating
by parts. Remember2

1

|x|2
= −1

2
x · ∇

(
1

|x|2

)
So if we define R(f) =

∑
xi

∂f
∂xi

we have the following properties:

1

|x|2
= −1

2
R

(
1

|x|2

)
∣∣∣∑xi∂xi(f)

∣∣∣2 ≤ d∑
i=1

x2i
∑

|∂xif |2 =
∑

x2i∇f

Let’s prove the inequality:

ˆ
Rd

|f(x)|2

|x|2
dx =

ˆ
|f |2

(
−1

2
x · ∇

(
1

|x|2

))
dx

=
1

2

ˆ d∑
i=1

∂xi(xi|f |2) ·
1

|x|2
dx

=
d

2

ˆ
|f |2

|x|2
+

1

2

ˆ
1

|x|2
∑

xi[fxi f̄ + ff̄xi ]dx

where we use the fact that, having |f |2 = ff̄ , it follows that ∂xi(ff̄) = fxi f̄ + ff̄xi . For
now we have that:

d− 2

2

ˆ
|f |2

|x|2
≤ 1

2

ˆ
R(f)f̄

|x|2
+
R(f̄)f

|x|2
dx.

2∂xi
1

|x|2 = −2
|x|3

xi
|x| =

−2xi
|x|4 e quindi

∑
xi · −2xi

|x|4 = −2
|x|2 .
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By applying Cauchy-Schwartz we get

ˆ ∣∣∣∣∣R(f)f̄|x|2
dx

∣∣∣∣∣ =
(ˆ

|R(f)|2

|x|2

) 1
2
(ˆ

|f̄ |2

|x|2

) 1
2

and in conclusion

d− 2

2

(ˆ
|f |2

|x|2

) 1
2

≤

(ˆ
|R(f)|2

|x|2
dx

) 1
2

≤
(ˆ

|∇f |2dx
) 1

2

.

Osservazione 3.1.3
From this inequality we have:

ˆ
|f |2

|x|2
dx ≼ ∥∇f∥2L2 = ∥|ξ|f̂∥L2 .

It is possible to generalize and get,∀s, 0 < s < d
2

ˆ
|f |2

|x|2s
≼ ∥|ξ|sf̂∥L2 .

Proposition 3.1.13 – Heisenberg’s inequality

For any f ∈ s we have

∥f∥2L2 ≤ 4π

d
inf
y∈Rd

(ˆ
|x− y|2|f(x)|2dx

) 1
2

inf
z∈Rd

(ˆ
|ξ − z|2|f̂(ξ)|2dξ

) 1
2

Osservazione 3.1.4
In some books you can find a different statement, which usually is

∥f∥2L2 ≤ C∥xf∥L2∥∇f∥L2 .

The problem with this formulation is that, its physical meaning is not really clear. If you
consider f as the position of a particle and f̂ as its frequency, you cannot have a peak for
both of them because, if this were the case, you would have both of the inf = 0. Let us
remember then having a peak means that we know with certainty the quantity rapresented
by those functions.

Proof of Heisenberg. Let us see it for d = 1.

∥f∥2L2 =

ˆ
ff̄∂x(x− y)dx = −

ˆ
∂x(ff̄)(x− y)dx = −

ˆ
(fxf̄ + ff̄x)(x− y)dx

By cauchy schwartz

∥f∥2L2 ≤ 2

(ˆ
|fx|2dx

) 1
2
(ˆ

|f̄x||2dx
) 1

2

= (∗)
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e visto che

(

ˆ
|fx|2dx)

1
2 = (

ˆ
4π2|ξ|2|f̂ |2dξ)

1
2

allora

(∗) = 4π(

ˆ
|ξ|2|f̂(ξ)|2dξ)

1
2 (

ˆ
|f |2(x− y)2)

1
2

e ci posso anche mettere un infy. By remembering that ̂fe−2πixz = f̂(ξ − z) allora si può

rifare lo stesso giochetto come prima per il primo pezzo con f̂ cos̀ı da avere
´
z.

Exercise to generalize to every d.

3.1.2 Distributions

Today we introduce distributions and then we will prove the Sobolev inequality.

Notation: C∞
0 = { smooth function with compact support}. We have C∞

0 ⊂ S ⊂ C∞.
These three spaces of test functions will generate three dual spaces:

(S)′ = S ′ = {tempered distributions}

(C∞
0 )′ = D′ = {distributions}

(C∞)′ = E ′ = {distribution with compact support}

Taking the dual reverses the inclusions, hence E ′ ⊂ S ′ ⊂ D′. We recall what the convergence
in these spaces is:

• fk
S→ f if ∀α, β ρα,β(fk − f) → 0.

• fk
C∞

0→ f if ∀α we have ∥∂α(fk − f)∥L∞ → 0 where suppfk ⊂ B forall k with B
compact.

• fk
C∞
→ f if ∀α,∀N > 0 we have sup |∂αfk − f | → 0.

f sta in un duale qualsiasi se T (fk) → T (f) quando fk → f nello spazio di cui considero
il duale.

Example 3.1.14. For any φ ∈ C∞
0 with d = 1 we consider φk = 1

kφ(x − k). We

can see that φk
C∞
→ 0 whereas φk

S
̸→ 0. The first one follows because φ è a supporto

compatto, quindi esiste k tale che φk = 0 essnedo fuori dal supporto e quindi ok.
Vediamo perchè non vale l’altra: assume that is converges to 0, then we have

ρ1,0 = sup
x∈R

∣∣∣∣xφ(x− k)

k
− 0

∣∣∣∣
Claim is that ρ1,0

k→+∞→ 0, if we consider x = k then we have φ(0) which can be
whatever we want, so absurd. Quindi è quite strong come convergenza.

Proposition 3.1.15

A linear functional T acting on S, so T : S → C, is a tempered distribution if and
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only if there exists m, k such that

|⟨T, f⟩| ≤ c
∑

|α|≤m
|β|≤k

ρα,β(f) ∀f ∈ S

Proof. Omessa.

Example 3.1.16 (Dirac mass at zero). We denote the dirac mass at the pointa with
δa. We define δa as the operator such that

⟨δa, φ⟩ = φ(a) ∀φ ∈ C∞.

We have δ0 ∈ E ′, indeed if we have φk
C∞
−→ φ then

⟨δ0, φk⟩ → ⟨δ0, φ⟩

Because E ′ ⊂ S ′ ⊂ D′, it is true that δ0 ∈ S and δ0 ∈ D′.

Idea per analisi armonica più importante S ′, per pde D′. ⌟

Example 3.1.17. if f ∈ Lp with 1 ≤ p ≤ +∞ then if we consider

⟨Tf , φ⟩ = Tf (φ) =

ˆ
Rd

fφdx

we have Tf ∈ D′.
|⟨Tf , φ⟩| ≤ ∥φ∥Lp′∥f∥Lp

so if φk
S→ φ then φk

Lp

→ φ and

|⟨Tf , φj − φ⟩| ≤ ∥φj − φ∥Lp′∥f∥Lp .

Example 3.1.18. If we have |g| ≼ (1 + |x|)k for some k, where g is a measurable
function

∣∣∣∣ˆ
Rd

gφdx

∣∣∣∣ = |Tg(φ)| ≼
ˆ
Rd

(1 + |x|)k|φ(x)|dx

=

ˆ
(1 + |x|)m(1 + |x|)k−m|φ(x)|dx

∗
≼ sup

x∈Rd

(1 + |x|)m|φ(x)|
ˆ
(1 + |x|)k−mdx

dove ∗ segue perchè φ è schwartz. Se k −m < d the function integrable. So we take
m such that m > k − d and we have that Tg(φ) is controlled by a finite number of
seminorms, so it is a tempered distribution.
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We see now differentiation of distributions and the fourier transform of tempered
distribution.

Definition 3.1.19 – Differentiation of distribution

We definea per φ ∈ C∞
0

⟨∂αT, φ⟩ = (−1)|α|⟨T, ∂αφ⟩
ail (−1)|α| is for rispettare the integration by parts.

Definition 3.1.20 – Fourier Transform and Antitransform of tempered distribution

φ ∈ S alloraa

⟨T̂ , φ⟩ = ⟨T, φ̂⟩

(well defined because is f ∈ S then f̂ ∈ S). We also have

⟨Ť , φ⟩ = ⟨T, φ̌⟩
aanche qui rispetti il caso in cui T is a function

Idea Let us compute ∂̂αδ0 so we can prendere confidenza. ⌟

Proposition 3.1.21

It holds
∂̂αδ0 = (2πix)α.

Proof. We want to see that

⟨∂̂αδ0, φ⟩ =
ˆ
(2πix)αφdx

Idea Distributions act on functions. So you consider the integral. ⌟

⟨∂̂αδ0, φ⟩ = ⟨∂αδ0, φ̂⟩
= (−1)|α|⟨δ0, ∂αφ̂⟩

= (−1)|α|⟨δ0, ̂(−2πix)αφ⟩

= ⟨δ0, ̂(2πix)αφ⟩

= ̂(2πix)αφ(0) =

ˆ
(2πix)αφ(x)e−2πi0·x.

In particular δ̂0 = 1.

Idea There are distributions whose fourier transform is a function. So the next definition
should not impress ourselves: ⌟

So we can consider the homogeneous sobolev space

H̊s = {φ ∈ S ′, φ̂ ∈ L1
locs.t.

ˆ
|ξ|2s|φ̂|2dξ < +∞}.
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Esercizio 3.1.1
Prove that

δ̂a = e−2πia·x

3.1.3 Sobolev Inequality

We are set on Rd. We consider, given φ ∈ S, the operator D such that

|̂D|sφ = (2πi|ξ|)sφ̂

Osservazione 3.1.5
remember that ∂̂xjφ = 2πiξjφ̂ and ∆̂φ = −4π2|ξ|2φ̂ then

|D|2 = −∆

Theorem 3.1.22 – Sobolev Inequality

For 1 < p < +∞ and f ∈ S such that |D|sf ∈ Lp then

∥f∥Lq ≼ ∥|D|sf∥Lp

where 1
p = 1

q +
s
d .

Osservazione 3.1.6
The noble example, the one really common to use, is for p = 2: ∥f∥Lq ≼ ∥|D|f∥L2 with
s = 1. So we have q = 2d

d−2 (we need d ≥ 3). So we have

∥f∥
L

2d
d−2

≤ ∥|D|f∥L2

By plancherel we have that
∥|D|f∥L2 = ∥∇f∥L2

infatti abbiamo
∥|̂D|f∥2L2 = ∥∇̂f∥L2

che esplicitato è ˆ
4π2|ξ|2|f̂ |2 =

ˆ
4π2|ξ|2|f̂ |2 =

ˆ
|∇f |2

In general for any p, where we dont have plancherel, we have an estimate with the
hilbert/riesz transform which gives

∥|D|u∥Lp ≼ ∥∇u∥Lp

let us see that the exponents have to be those by a scaling argument: if you define
fλ = f(xλ) so

∥fλ∥Lq = λ
d
q ∥f∥Lq

we also have that
|D|sfλ = λ−s|D|f(x

λ
)
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so
∥|D|sfλ∥Lp = λ

−s+ d
p ∥|D|sf∥Lp

so we need to have
d

q
= −s+ d

p

Proof of Sobolev’s theorem. We recall that3

∥f∥Lq = sup
∥g∥

Lp′=1

g∈S

|⟨f, g⟩|

Ma allora possiamo usare plancherel

= sup
∥g∥

Lp′=1

g∈S

|⟨f̂ , ĝ⟩| = sup
∥g∥

Lp′=1

g∈S

|⟨(2π|ξ|)sf̂ , (2π|ξ|−sĝ⟩

Chiaramente (2π|ξ|)sf̂ è una distribuzione temperata (diminuisce più di polinomi). Ho
quindi bisogno che (2π|ξ|−sĝ ∈ S, ma per questo serve che ĝ = 0 in un intorno dell’origine.

Idea Domanda: le funzioni con questa proprietà sono dense nella classe di Schwartz? Se
si allora il sup può passare a quelle. ⌟

if this were the case we would have

sup
g∈F

|⟨|D|sf, |D|−sg⟩|

where F = {g ∈ S, ĝ = 0 in a neigherbood of the origin}. Let us consider φ(t) =

{
1 |t| ≤ 1

0 |t| > 2
and

ĝε(ξ) = ĝ(ξ)

[
1− φ

(
|ξ|
ε

)]
Clearly ĝε ∈ F . So we just have to prove there is convergence in Lp: we have

g − gε =

(
ĝφ

(
|ξ|
ε

))∨

= εdg ∗ φ̌(ε·)](x)

So4

∥g − gε∥Lp = εd∥g ∗ φ̌(ε·)(x)∥Lp ≤ εd∥g∥L1ε
− d

p ∥φ̌Lp = ε
d(1− 1

p
)∥g∥L1∥φ̌∥Lp

So, by remembering |̂D|sf = (2π|ξ|)sf̂ we have

∥f∥Lq = sup
g∈F

∥g∥
Lp′

⟨|D|sf, |D|−sg⟩ ≤ sup
∥g∥

Lq′=1
g∈F

|∥|D|sf∥Lp∥|D|−sg∥Lp′

(we applied holder). We use now HLS to see

∥|D|−sg∥Lp′ ≼ ∥g∥Lq′ = 1

3ci possiamo ridurre a S perchè è denso in Lp′ .
4remember ∥f(εx)∥Lp = ε

− d
p ∥f∥Lp
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How do we apply HLS? we can see that if 0 < s < d

|D|−sg = c
1

|x|d−s
∗ g

and we want to see

∥ 1

|x|d−s
∗ g∥Lp′ ≼ ∥g∥Lq′

Remembering

∥ 1

|x|α
∗ g∥Lp′ ≼ ∥g∥Lq′

where

1 +
1

p′
=

1

q′
+
α

d

with our α we have 1
p = 1

q +
s
d .

Osservazione 3.1.7
curiosità: Lieb ha trovato la costante migliore per

∥ 1

|x|α
∗ u∥Lq ≤ C∥u∥Lp

Da questa possiamo ottenere per dualità

∥u∥
L

2d
d−2s

≤ C̃∥|D|su∥L2
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3.2 The Hilbert and Riesz transform

Let us understand the reason why we start to care about the Riesz transform. Thanks to
the Sobolev inequality, when s = 1, we have that

∥u∥Lq ≼
∥∥|D|u

∥∥
Lp .

If p = 2 we see that ∥|D|u∥ = ∥∇u∥, indeed since ∂̂xiu = 2πiξiû we have

̂|D|u = 2π|ξ|û.

Unfortunately this is not the case for any p, but we will see that for 1 < p < +∞ we have:

∥|D|u∥Lp ≼ ∥∇u∥Lp .

In order to arrive to such an inequality we first try to write5 |D|u in terms of ∇u.

Idea Remembering how the Fourier transform behaves for differentiation we see that:

2π|ξ| = 2π|ξ|2

|ξ|
=

d∑
i=1

2πξ2i
|ξ|

=
d∑

j=1

(2πiξj)

(
−iξj
|ξ|

)
.

If we can define an operator Tj such that

T̂jφ = −i ξj
|ξ|
φ̂⇒ Tjφ =

(
−i ξj

|ξ|
φ̂

)∨

then it will be clear that

Tj(∂xk
φ) =

(
− iξj

|ξ
2πiξkφ̂

)∨
= ∂xk

(Tjφ).

So we have that the operations do operations do commute and we have a multiplier for the
operator Tj . ⌟

Since the multipliers coincide seen through Fourier we have that

|D|φ =
d∑

j=1

Tj(∂xjφ).

This means that the Lp norm can be estimated6 as follows:

∥|D|φ∥Lp =

∥∥∥∥∥∥
d∑

j=1

Tj(∂xjφ)

∥∥∥∥∥∥
Lp

≤
d∑

j=1

∥Tj(∂xjφ)∥Lp

3.3
≼

d∑
j=1

∥∂xjφ∥Lp .

Thus we have an equivalent norm to ∥∇φ∥Lp .

5We have that |D| is a global operator, whereas ∇ it’s local. One can talk about pseudodifferential
operator.

6The Calderón-Zygmund theorem (3.3) has a central role.
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Idea The right operator Tj will be the Riesz transform Rj acting on Schwartz’s functions.
Since

Rjφ =

(
−i ξj

|ξ|
φ̂

)∨
=

(
−i ξj

|ξ|

)∨
∗ φ

We will need to give a sense, with the language of tempered distributions, to(
−i ξj

|ξ|

)∨
.

⌟

Another reason why the Riesz transform is so important is given by the study of PDEs.
When we consider the problem −∆u = f we have that ∂2u

∂x2 have the same regularity as f .
Can we say something about the mixed partials? We will have that

∂2

∂xi∂xj
= Ri(Rj(∆))

hence the regularity of the homogeneous derivatives gives the regularity of the mixed ones
if the operator Rj is continuous, i.e.:

∥Rj(∆u)∥Lp ≼ ∥∆u∥Lp .

This will be a consequence of the Schauder’s estimates.

3.2.1 Hilbert Transform

Let us start from the case d = 1. This means that
−iξj
|ξ| = −isign(ξ).

Definition 3.2.1 – Hilbert transform

Given φ ∈ S we define the Hilbert transform as the tempered distribution such that

Ĥφ = −isign(ξ)φ̂.

Idea Remembering the good properties of the Fourier transform related to the convolution
operator we want to find a kernel ⌣ such that

Hφ =⌣ .

⌟

Definition 3.2.2 – Principal value

We consider ω0 ∈ S ′ such that

⟨ω0, φ⟩ =
1

π
lim
ε→0

ˆ
|ε|≤|x|≤1

φ(x)

x
dx+

1

π

ˆ
|x|>1

φ(x)

x
dx =

1

π
lim
ε→0

ˆ
|x|≥ε

φ(x)

x
dx

This is also called the principal value of 1
x .
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Osservazione 3.2.1
With the previous definition it in not clear why ω0 ∈ S ′. We can rewrite ⟨ω0, φ⟩ as follows:〈

PV

(
1

x

)
, ε

〉
= lim

ε→0

ˆ
|x|≥ε

φ

x
dx.

This second form gives more an idea of why ω0 ∈ S ′.

Proof.

Idea We will start to use a very simple, but poweful trick: if we have an odd function f
on a even interval I then ˆ

I
f(x)dx = 0.

Dealing with computations where integral appear we can add the quantity we need to
proceed, for example to use Lagrange theorem, without any problem. ⌟

We have that ω0 ∈ S ′ if ⟨ω0, φ⟩ is controlled by a finite number of seminorms. This
follows because

lim
ε→0

ˆ
|x|≥ε

φ

x
dx =

ˆ
|ε|≤|x|≤1

φ(x)

x
dx+

ˆ
|x|>1

xφ

x2
dx

=

ˆ
|ε|≤|x|≤1

φ(x)− φ(0)

x
+

ˆ
|x|>1

xφ

x2
dx

≤ 2∥φ′∥L∞ + ∥xφ∥L∞ .

Definition 3.2.3 – Truncated Hilbert Transform

We consider the truncated Hilbert transform as

Hεφ =
1

π

ˆ
|y|≥ε

f(x− y)

y
dy =

1

π

ˆ
|x−y|≥ε

f(y)

x− y
dy.

Osservazione 3.2.2
It is clear that we can rewrite the Hilbert’s transform as

Hφ = lim
ε→0

Hεφ = lim
ε→0

1

π

ˆ
|x−y|≥ε

f(y)

x− y
dy.

This form is handier because it is in terms of a singular integral.

Idea Achtung! In this case the denominator is elevated to the power of 1 which is also the
dimension in which we are working. This works because we do not have modules. Having
an odd function we are able to prove a (p, p)-estimate. In the case of higher dimension
we will have modules, hence the denominator will be of a different power, which will be
estimate thanks to (HLS). ⌟
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Proposition 3.2.4

The multiplier ω0 is such that

ω̂0 = −isignξ.

This clearly gives us Hφ = ω0.

Proof.

⟨ω̂0, φ⟩ = ⟨ω0, φ̂⟩

= lim
ε→0

1

π

ˆ
|ξ|≥ε

ˆφ(x)

ξ

= lim
ε→0

1

π

ˆ
|ξ|≥ε

1

ξ

ˆ
R
φ(x)e−2πiξxdxdξ

= lim
ε→0

1

π

ˆ
R
φ(x)

ˆ
|ξ|≥ε

1

ξ
e−2πiξxdξdx

= lim
ε→0

−i
π

ˆ
R
φ(x)

ˆ
|ξ|≥ε

sin 2πξx

ξ
dξdx

=

ˆ
R
φ(−isign(x))dx

= ⟨φ,−isign(x)⟩

Where we used the following identity:

ˆ ∞

−∞

sin(bx)

x
dx = πsign(b).

This follows because:

1. we have that ˆ ∞

−∞

sin(x)

x
dx = π.

Indeed if we consider I(a) =
´ +∞
0

sin(x)
x e−axdx, this is equal to prove I(0) = π

2 .

I ′(a) =

ˆ +∞

0

sin(x)

x
e−ax(−x) = −

ˆ +∞

0
sin(x)e−axdx

=

�
���

���
��*

0[
e−ax

−a
sin(x)

]+∞

0

+
1

a

ˆ +∞

0
e−ax cos(x)dx

= −1

a

[
e−ax

x
cos(x)

]+∞

0

− 1

a

ˆ +∞

0
e−ax sin(x)dx

= − 1

a2
− 1

a2
I ′(a).

This gives the following ODE:

(1 +
1

a2
)I ′ = − 1

a2
⇒ −I ′ = − 1

1 + a2
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which solution is

I(a) = − arctan(a) + C.

We see that sending a→ +∞ we have I(a) → 0 and arctan(a) → π
2 , hence C = π

2 .

2. We just need the following change of variables: bx = x′, indeed:

ˆ +∞

−∞

sin(x′)
x′

b

1

b
dx′ =

[ˆ +∞

−∞

sin(x)

x
dx

]
sign(b)

= πsign(b).

We now show a really useful lemma for any operator T which, will have a nice
consequence for the Hilbert transform.

Lemma 3.2.5

Ifa supω>0 ∥Sω∥Lp→Lp < +∞ we have

∥Sωf∥Lp ≼ cω∥f∥Lp .

As a direct consequence we have that

∥Sω(f)− f∥Lp
ω→+∞−→ 0.

aBy ∥Sω∥ we consider the operator norm of Sω : Lp → Lp, which is sup
f∈Lp

∥f∥Lp=1

∥Sωf∥Lp .

Proof of Lemma. We consider

A = {f ∈ L1 ∩ Lp : f̂ has compact support}

We have that A is dense in Lp, indeed
(non immediato, ci deve ripensare) and that for any function in A we have Sω(f) = f

for ω >> 1.

B = {f ∈ Lp : lim
ω→+∞

Sω(f) = f in Lp}

is closed in Lp. (same spirit of the maximal operator proof)
We want to prove that fn ∈ B e fn → f in Lp allora f ∈ B. Let ∥fn − f∥ ≤ ε. We want
to prove ∀ε:

lim sup
ω

∥Sω(f)− f∥ ≤ ε

Aggiungo e tolgo

∥Sω(f)− f∥ = ∥Sω(f)− Sω(fn) + Sω(fn)− fn + fn − f∥
≤ ∥Sω(f)− Sω(fn)∥+ ∥Sω(fn)− fn∥+ ∥fn − f∥
= ∥Sω(f − fn)∥+ ∥Sω(fn)− fn∥+ ∥fn − f∥
≤ C∥f − fn∥Lp + 0 + ε

≤ (1 + C)ε.
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Vedremo che
∥Hf∥Lp ≼ ∥f∥Lp

for 1 < p <∞. Da questo segue

Corollary 3.2.6

Take Sω(f) = (χ[−ω,ω](ξ)f̂)
∨. Is it true that Sω

ω→∞−→ f in Lp?

Proof of corollary. For p = 2 it is trivial thanks to Placherel inequality, for any p it’s not
so immediate. it is true for 1 < p <∞. We write

Sω(f) =

ˆ
|ξ|<ω

f̂(ξ)e2πiξxdξ.

Let us see that sup ∥Sω∥Lp→Lp < +∞ then we conclude thanks to the previous lemma.
We introduce the Riesz Projector

P : Lp −→ Lp

f 7−→ 1
2 [f + iHf ]

.

We see

P̂ f =
1

2

[
f̂ + sign(ξ)f̂

]
= χ[0,+∞)(ξ)f̂ .

Idea Voglio vedere χ[0,+∞] = χ[−ω,+∞) − χ[ω,+∞) so we’ll have χ[−ω,ω]. caratteristica 0
infinito come caratteristica (- omega, infito ) - caratteristica (omega , infinito) cos̀ı avremo
caratteristica dell’intervallo. chiaramente la caratteristica 0 , infinito è p-p continua ,
dobbiamo vedere che lo è anche la traslazione in trasformata. ⌟

Claim:
Sω(f) = e−2πiωxP (e2πiωxf)− e2πiωxP (e−2πiωxf)

è vero, mostralo per esercizio. (questo è l’idea di traslazione per avere solo intervallo -
omega, omega).
We see that

∥Sω(f)∥Lp ≤ ∥P (e2πiωxf)∥Lp + ∥P (e−2πiωxf)∥Lp ≤ C∥e2πiωxf∥Lp + C∥e−2πiωxf∥Lp

e l’esponenziale sparisce da norma. (per controllare norma P in ultimo passaggio hai usato
stima p-p per trasformata hilbert)

(parentesi: se si fa con cubo allora il risultato resta vero grazie a trasformata di riesz.
se invece si usa la caratteristica con disco il risultato crolla perchè non si ha una p − p
stima e questo è l’argomento di un seminario)

3.2.2 Riesz Transform

Definition 3.2.7 – Riesz trasform

We define con φ ∈ S (con il pedice j indichiamo la j−esima direzione)

⟨ωj , φ⟩ =
Γ(d+1

2 )

π
d+1
2

lim
ε→0

ˆ
|y|>ε

yj
|y|d+1

φ(y)dy
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and the Riesz trasform

Rjφ =
Γ(d+1

2 )

π
d+1
2

lim
ε→0

ˆ
|x−y|>ε

xj − yj
|x− y|d+1

φ(y)dy

Proposition 3.2.8

It holds

R̂jφ =
−iξj
|ξ|

φ̂(ξ).

Proof.

⟨ω̂j , φ⟩ = ⟨ωj , φ̂⟩

=
Γ(d+1

2 )

π
d+1
2

lim
ε→0

ˆ
|ξ|>ε

ˆ
ξj
|ξ|

ˆ
Rd

φ(x)e−2πixi·ξ

=
Γ(d+1

2 )

π
d+1
2

lim
ε→0

ˆ
Rd

φ(x)

ˆ
1
ε
>|ξ|>ε

ξj
|ξ|
e−2πix·ξ

︸ ︷︷ ︸
=−i

xj
|x|

Ricordando che ξ = rθ con r > 0 e θ ∈ Sd−1 vediamo che vale l’uguaglianza segnata:

lim
ε→0

ˆ
1
ε
>|ξ|>ε

ξj
|ξ|
e−2πix·ξ = lim

ˆ
Sd−1

ˆ
1
ε
>r>ε

rθje
−2πirθ·x

rd+1
rd−1drdσ

= lim

ˆ
Sd−1

ˆ
1
ε
>r>ε

θje
−2πirθ·x

r
drdσ

= −i lim
ˆ
Sd−1

ˆ
1
ε
>r>ε

θj sin(2πrθ · x)
r

drdσ

= − iπ
2

ˆ
Sd−1

θjsign(θ · x)dσ

=
iπ

2

(
Γ(d+1

2 )

πd+1

)−1

.

dove l’ultimo uguale lo vediamo la prossima volta
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3.3 Calderón-Zygmund’s theory

Definition 3.3.1 – Calderón-Zygmund kernel

We define the Calderón-Zygmund kernel as the function K : Rd\{0} → C such that:

1. |K(x)| ≤ β|x|−d per ogni x ̸= 0.

2. Hörmander’s condition: there exists B such that ∀y ̸= 0

ˆ
|x|≥2|y|

|K(x)−K(x− y)|dx ≤ B

3. Zero-Average on shells: We have ∀R,S > 0:

ˆ
R<|x|<S

K(x)dx = 0.

Osservazione 3.3.1
These three condition will not always be used. We will specify when this is the case or not.

Definition 3.3.2 – Singular integrals

Given a Calderón-Zygmund kernel, we define an operator by means of its principal
value. The singular integral operator with kernel K is defined as follows:

Tf := lim
ε→0

ˆ
|x−y|≥ε

K(x− y)f(y)dy.

Osservazione 3.3.2
If K is such that |∇K| ≼ 1

|x|d+1 for all x ̸= 0, then the Hörmander’s condition holds.

Proof. DA SCRIVERE

Theorem 3.3.3 – Calderón-Zygmund’s Theorem

We have
∥Tf∥Lp ≼ ∥f∥Lp .

Idea The proof of this theorem will follow the next steps:

1. We prove the L2 − L2 strong continuity.

2. We prove the L1 − L1 weak continuity.

3. By using the Marcinkiewicz theorem we have Lp−Lp strong continuity for 1 < p ≤ 2.

4. By duality we get Lp − Lp strong continuity for 2 ≤ p < +∞.

⌟
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Definition 3.3.4

For any r, s ∈ R+ we can consider the truncation kernel Kr,s defined as:

Kr,s(x) = K(x)χr<|x|<s(x).

This truncation will be useful in order to avoid singulary at 0 and at infinity.

Lemma 3.3.5 – Strong L2 − L2 continuity

Given a Calderón-Zygmund kernel K it holds that

∥Kr,s ∗ f∥L2 ≼ ∥f∥L2 uniformly in r, s.

Remembering that K ∗ f = lim
r→0

s→+∞

Kr,s ∗ f , then we have:

∥K ∗ f∥L2 ≤ C∥f∥L2 .

Proof. In this proof we suppose f ∈ S. If we consider

Kε ∗ f =

ˆ
ε<|y|< 1

ε

K(y)f(x− y)dy

the L2 − L2 estimate will follow from the uniform convergence and the fact that {Kε ∗ f}
is a Cauchy sequence in L2.
{Kε ∗ f} is a Cauchy sequence: given ε2 < ε1 we want to study

∥Kε2 ∗ f −Kε1 ∗ f∥L2
x
=

∥∥∥∥∥∥
ˆ
ε2<|y|< 1

ε2

K(y)f(x− y)dx−
ˆ
ε1<|y|< 1

ε1

K(y)f(x− y)dx

∥∥∥∥∥∥
L2
x

.

We now compute the two integrals separately. We first note that:

∥Kχ 1
ε1

<|y|< 1
ε2

∥L2 =

ˆ
1
ε1

<|y|< 1
ε2

|K(x)|2dx

 1
2

≼

(ˆ
1

|x|2d

) 1
2

=

(
ωd−1

ˆ
rd−1

r2d

) 1
2

≈ ε
d
2
1 .

By Young’s interpolation theorem we have∥∥∥∥∥∥
ˆ

1
ε1

<|y|< 1
ε2

K(y)f(x− y)dx

∥∥∥∥∥∥
L2

≤
∥∥∥∥Kχ 1

ε1
<|y|< 1

ε2

∥∥∥∥
L2

∥f∥L1

≼ ∥f∥1.

For the second integral we use the third condition in the definition7 of the Calderón-
Zygmund kernel, i.e.

7the trick is the following: having and integral equal to 0 we can add the quantity we need in order to
proceed in the computation without changing it.
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ˆ
ε2<|y|<ε1

K(y)f(x− y)dx =

ˆ
ε2<|y|<ε1

K(y)(f(x− y)− f(x))dx.

Having f ∈ S we can write f(x − y) − f(x) =
´ 1
0 ⟨∇f(x − ty), y)dt and, by Minkowski’s

theorem, it follows that:∥∥∥∥∥
ˆ
ε2<|y|<ε1

K(y)

ˆ 1

0
∇f(x− ty) · ydtdy

∥∥∥∥∥ ≤
ˆ 1

0

ˆ
ε2<|y|<ε1

|y||K(y)|∥∇f(x− ty)∥L2
x
dydt

≼ ∥∇f(x)∥L2

ˆ 1

0

ˆ
ε2≤|y|≤ε1

1

|y|d−1

= ∥∇f∥ωd1

ˆ 1

0

ˆ ε1

ε2

rd−1

rd−1

≼ ε1

where we used the first condition, i.e |y||K(y)| ≤ 1
|y|d−1 and the fact that the norm is

translation invariant.
Uniform estimate: For this part of the proof we will specialize ourself to the case of r = 1

ε
and s = ε, so the kernel will be

Kε = Kχ 1
ε
≤|x|≤ε

One can see that, if K is a Calderón-Zygmund kernel, then also Kε is one. If we want an
uniform estimate on Kε, thanks to Plancherel, we can check it on K̂ε.

K̂ε =

ˆ
Rd

Kεe
−2πiξxdx

=

ˆ
|x|≤| 1

|ξ|

Kεe
−2πiξxdx+

ˆ
|x|≥ 1

|ξ|

Kεe
−2πiξxdx

= I + II.

We now estimate the two integrals separately. We can rewrite8:

|I| =

∣∣∣∣∣∣
ˆ

1
ε
<|x|< 1

|ξ|

K(x)(e−2πiξ·x − 1)dx

∣∣∣∣∣∣
≤
ˆ

1
ε
<|x|< 1

|ξ|

|K(x)|2π|ξ||x|dx

= 2π|ξ|
ˆ

1
ε
<|x|< 1

|ξ|

|K(x)||x|dx

≤ 2π|ξ|
ˆ 1

|ξ|

1
ε

1

|x|d−1

≈ 2π|ξ| 1
|ξ|

≈ 1.

8We use the trick on shell and the Lagrange estimate with F (x) = e−2πiξ·x.
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Idea The estimate of II starts with a computation that, apparently is nonsense, but that
it will be handy since it allows us to use the Hörmander condition, which we still have not
used. We can write

II =

ˆ
1
|ξ|≤|x|<ε

K(x)e−2πiξ·x

= −
ˆ

1
|ξ|≤|x|<ε

K(x)e
−2πiξ·

(
x+ ξ

2|ξ|2

)
dx

= −
ˆ

1
|ξ|<|x− ξ

2|ξ|2
|<ε

e−2πiξ·xK

(
x− ξ

2|ξ|2

)
︸ ︷︷ ︸

B

dx.

So we have an equality like II = −B. We can also write 2II = II −B. The key passege
will be to add and substract the right quantity A so that we can use Hörmander and have

2II = (II −A) + (−B +A).

One can see that the right A is:

A =

ˆ
1
|ξ|≤|x|≤ε

K

(
x− ξ

2|ξ|2

)
e−2πiξ·xdx.

⌟

We can estimate the first term:

|II −A| =

∣∣∣∣∣∣
ˆ

1
|ξ|≤|x|≤ε

(
K(x)−K(x− ξ

2|ξ|2
)

)
e−2πiξ·xdx

∣∣∣∣∣∣
≤
ˆ

1
|ξ|≤|x|≤ε

∣∣∣∣∣K(x)−K

(
x− ξ

2|ξ|2

)∣∣∣∣∣ dx
≼ 1

where we use the Hörmander condition9 on |x| > 1
|ξ| = 2|y|.

For the other term we can see instead that:

A−B =

ˆ
1
|ξ|<|x|

Kε

(
x− ξ

2|ξ|2

)
e−2πiξ·xdx−

ˆ
1
|ξ|<

∣∣∣∣x− ξ

2|ξ|2

∣∣∣∣Kε

(
x− ξ

2|ξ|2

)
e−2πiξ·xdx

If we explicit the inequality in the domain of the integral we have10:∣∣∣∣x− ξ

2|ξ|2

∣∣∣∣ ≥ |x| −
∣∣∣∣ ξ2|ξ|

∣∣∣∣ = |x| − 1

2|ξ|
≥ 1

2|ξ|
.

9The change of variables is: ξ
2|ξ|2 = y. This gives |y| = 1

2|ξ| .
10since 1

|ξ| < |x| then − 1
2|ξ| > − |x|

2
.
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ˆ
|x− ξ

2|ξ|2
|≤|ξ|≤|x|≤s

K

(
x− ξ

2|ξ|2

)
e−2πiξ·xdx

∣∣∣∣∣∣ ≤
ˆ

1
2|ξ|≤|x− ξ

2|ξ|2
≤ 1

|ξ|

|K(x− ξ

2|ξ|2
)e−2πiξ·x|dx

=

ˆ
1

2|ξ|≤|x|≤ 1
|ξ|

|K(x)|dx

≤
ˆ 1

|ξ|

1
2|ξ|

rd−1

rd
dr = log(2)

which does not depend on ξ.
Conclusion: Using Plancherel we can see that

∥Kε ∗ f∥L2 = ∥K̂εf̂∥L2 ≤ sup
ε>0

|K̂ε∥f̂∥L2 ≤ sup
ε>0

|K̂ε∥f∥L2 ≼ ∥f∥L2

Remembering that, in the sense of the principal valute, we have

Tf =

ˆ
K(x− y)f(y)dy

then we have the L2 − L2 estimate:

∥Tf∥L2 ≼ ∥f∥L2 ∀f ∈ S.

By a density argument this follows also ∀f ∈ Lp.

Osservazione 3.3.3
For the Hilbert and the Riesz transform this estimate is obvious. It follows directly from
the Plancherel formula.

Lemma 3.3.6 – Weak L1 − L1 continuity

Given the kernel K and the estimate ∥Tf∥L2 ≼ ∥f∥L2 we have that:

µ{|K ∗ f | > λ} ≼
∥f∥L1

λ
.

Osservazione 3.3.4
This lemma actually holds if we know that ∥Tf∥L2 ≼ ∥f∥L2 and if have a kernel M which
satisfies the Hörmander condition. In our case the L2 − L2 estimate is guaranteed thanks
to the Calderón-Zygmund kernel.

In order to prove this lemma first we need to see the following:

Lemma 3.3.7 – Calderón-Zygmund Decomposition Lemma

If we have f ∈ L1(Rd) and λ > 0 we can writea f = g + b, with this two properties:{
|g| ≤ λ

b =
∑

Q∈Q χQf

where Q is a family of disjoint cubes, with the property:

λ ≤ 1

|Q|

ˆ
Q
|f |dx ≤ 2dλ.
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Furthermore, ∣∣∣∣∣∣
⋃
Q

Q

∣∣∣∣∣∣ ≤ 1

λ
∥f∥1.

ag denotes good function and b bad function.

Proof. For all ℓ ∈ Z we define Dℓ a family of dyadic cubes:

Dℓ =


d∏

i=1

[
2ℓmi, 2

ℓ(mi) + 1)
)

m1, . . . ,md ∈ Z

 .

If the cube Q ∈ Dℓ and Q′ ∈ Dℓ′ there are two possibilities:

1. Q∩Q′ = ∅

2. Q ⊂ Q′ or Q′ ⊂ Q.

Fix λ then for f ∈ L1 we have that there exists ℓ0,∀Q ∈ Dℓ0 such that11

1

|Q|

ˆ
Q
|f |dx ≤ λ.

For any cube in Dℓ0 we take the12 ”children” Q′, i.e. Q′ ∈ Dℓ0−1. With the children it
may happen that

1

|Q′|

ˆ
Q′

|f |dx < λ or
1

|Q′|

ˆ
Q′

|f |dx ≥ λ.

If the first condition happens, we say Q′ is a good set and iterate the construction, otherwise
Q′ is a bad set. We define B as the family of bad sets. We now ask ourselves: if Q ∈ B do
we have an upper bound for the integral?

λ ≤ 1

|Q′|

ˆ
Q′

|f |dx =
2d

|Q|

ˆ
Q′

|f |dx ≤ 2dλ.

Idea If we take a point which /∈ B, it means that each cube Q which surrounds it, has
integral < λ. The thesis will follow thanks to Lebesgue theorem. ⌟

What about the measure of the bad family?∣∣∣∣∣∣
⋃
Q∈B

Q

∣∣∣∣∣∣ ≤
∑
Q∈B

|Q| ≤
∑ 1

λ

ˆ
Q
|f |dx ≤ 1

λ
∥f∥L1 .

Let us take x0 ∈ Rd\
⋃

Q∈B Q. It means that there exists Qi such that |Qi| → 0,
x0 ∈ Qi and

1

|Qi|

ˆ
Qi

|f |dx ≤ λ

Then for lebesgue theorem we have |f(x0)| ≤ λ a.e. We can define the good function
g := f −

∑
Q χQf and have the thesis.

11Having f ∈ L1 and that |Q| = 2dℓ0 we can determine ℓ0 such that
∥f∥

L1

λ
< 2dℓ0 .

12It is a cube with half the side length of the previous one.
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Proof of Weak L1 − L1 continuity. Let us define

f1 =

f Rd\
⋃

Q∈B Q
1
|Q|

´
Q fdx otherwise

f2 =

0 Rd\
⋃

Q∈B Q
f − 1

|Q|
´
Q fdx Q ∈ B

We have that f = f1 + f2, where

1. ∥f1∥L∞ ≤ 2dλ , indeed if x ∈ Rd\
⋃

Q∈B Q we have that |f | < λ, otherwise
1
|Q|

´
Q fdx < 2dλ.

2. ∥f1∥L1 ≤ ∥f∥L1 , indeed

ˆ
Q

∣∣∣∣∣ 1

|Q|

ˆ
Q
fdx

∣∣∣∣∣ dy ≤
ˆ
Q
|f |dx

3. ∥f2∥L1 ≤ 2∥f∥L1 , it is similar to the previous one.

In order to prove the (1− 1)-weak condition we can write:

µ{|Kε ∗ f | > λ} ≤ µ

{
|Kε ∗ f1| >

λ

2

}
︸ ︷︷ ︸

I

+µ

{
|Kε ∗ f2| >

λ

2

}
︸ ︷︷ ︸

II

Knowing
´
|f1|2dx ≤ 2dλ∥f1∥L1 , thanks to the (2− 2)-continuity and to the chebychev

inequality we have:

I ≤ C
∥f1∥2L2

λ2
≼

∥f∥L1

λ
.

Idea In order to estimate II it will be cunning to consider bigger cubes Q∗ in order to
separate points but having still control. ⌟

Given Q ∈ B which side is of length ℓ, we consider Q∗ such that its size is ℓ∗ = 2
√
dℓ.

We can write

II ≤ µ

⋃
Q∈B

Q∗

+ µ

{
Rd\ ∪ Q∗, |Kε ∗ f2| >

λ

2

}

≤
∑
Q∈B

µ(Q∗) + µ

{
Rd\ ∪ Q∗, |Kε ∗ f2| >

λ

2

}
=
∑

(2
√
d)dµ(Q) + µ

{
Rd\ ∪ Q∗, |Kε ∗ f2| >

λ

2

}
≼

∥f∥L1

λ
+ µ

{
Rd\ ∪ Q∗, |Kε ∗ f2| >

λ

2

}
.

We have the thesis if we prove that

µ

{
Rd\ ∪ Q∗, |Kε ∗ f2| >

λ

2

}
︸ ︷︷ ︸

C

≼
∥f∥L1

λ
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If we consider fQ = (f −
ffl
Q |f |dx)χQ, by Chebychev we have

C ≼
1

λ

ˆ
Rd\∪Q∗

|Kε ∗ f2|dx ≼
∑
Q

1

λ

ˆ
Rd\Q∗

|Kε ∗ fQ|dx

We can find yQ such that each of its neighbourhood is contained in Q. Then we have13:

Kε ∗ fQ =

ˆ
Q
Kε(x− y)fQ(y)dy

=

ˆ
Q
[Kε(x− y)−Kε(x− yQ)]fQ(y)dy.

We have proved that

C ≼
1

λ

∑
Q

ˆ
Rd\Q∗

∣∣∣∣∣
ˆ
Q
[Kε(x− y)−Kε(x− yQ)]fQ(y)dy

∣∣∣∣∣ dx.
We conclude thanks to the Hörmander condition and Fubini:

C ≼
1

λ

∑
Q

ˆ
Q

ˆ
Rd\Q∗

|[Kε(x− y)−Kε(x− yQ)||fQ|(y)dxdy

≼
1

λ

∑
Q∈B

ˆ
Q
|fQ|dx

≤ 1

λ
∥f∥L1 .

Proof of Theorem. For the previous lemmas we get the L2 − L2 strong continuity and the
L1 − L1 weak continuity. By applying the Marcinkiewitz theorem we have the Lp − Lp

strong continuity for 1 < p ≤ 2. We show now the Lp−Lp strong continuity for 2 ≤ p <∞
by a duality argument : given T , let us consider the adjoint operator T ∗:

⟨Tf, g⟩ = ⟨f, T ∗g⟩.

So T ∗ is defined as

T ∗g =

ˆ
K∗(x− y)g(y)dy

where
K∗ = K(−x).

By definition of the ∥ · ∥Lp we have

∥Tf∥Lp = sup
∥g∥

Lp′=1
|⟨Tf, g⟩| = sup

∥g∥
Lp′=1

|⟨f, T ∗g⟩|.

So we have
|⟨f, T ∗g⟩| ≤ ∥f∥Lp∥T ∗g∥Lp′ ≼ ∥f∥Lp∥g∥Lp′

and
∥Tf∥Lp ≼ ∥f∥Lp .

13fQ has zero average for definition
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3.4 Littlewood-Paley theory

We now present the last result seen in this course, which was proved at the beginning
of the 1960s and is nowadays one of the most common tool in harmonic analysis.

Lemma 3.4.1 – Paley-Littlewood decomposition

There exists ψ ∈ C∞(Rd) with compact support in Rd\{0} such that

∞∑
j=−∞

ψ(2−jx) = 1 ∀x ̸= 0

For every x ̸= 0 at max two of the terms overlaps. We can also take ψ radially
symmetric. (è una funzione che si concentra quello che ti interessa)

Osservazione 3.4.1
This function ψ can be seen as a locator, i.e. when we consider ψf̂ we are localizing the
function to a specific frequency. Indedd we can see that

f̂ =
∞∑

j=−∞
ψ(2−jx)f̂ =

+∞∑
j=−∞

f̂j .

Proof. Let us consider χ(x) =

{
1 |x| ≤ 1

0 |x| ≥ 2
such that χ ∈ C∞. We define ψ(x) =

χ(x)− χ(2x). This function is such that14:

N∑
j=−N

ψ(2−jx) = ψ(2Nx) + ψ(2N−1x) + · · ·+ ψ(2−Nx)

= χ(2−Nx)− χ(2N+1x)

Passing to the limit N → +∞ we have the thesis since χ(0)− χ(∞) = 1.

The following result has a proof which is a prototype use of the locator we just defined.

Theorem 3.4.2 – Mikhlin- Hörmander

Let m : Rd\{0} → C such that ∀|γ| ≤ d+ 2 it holds

|∂γm(z)| ≼ |ξ|−|γ|.

Then for all 1 < p <∞ ∥∥∥∥(m(ξ)f̂
)∨∥∥∥∥

Lp

≼ ∥f∥Lp .

Idea We proved that having a Calderón-Zygmund kernelK gives us the estimate ∥Tf∥Lp ≼
∥f∥Lp . In this statement it is as if we were considering m such that K̂ = m, hence we are
unloading the requests on the kernel as decay conditions on the multiplier. ⌟

14We have a telescopic sum.
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Proof. If we consider γ = 0 then it clear that m ∈ L∞ and so, for Plancherel:

∥∥∥∥(m(ξ)f̂
)∨∥∥∥∥

L2

= ∥m(ξ)f̂∥L2 ≤ ∥f̂∥L2 = ∥f∥L2 .

This gives as a (2, 2)-estimate. As we saw in Observation (3.3.4) we just need to prove
that the Hörmander condition holds. Let us write15:

m(ξ) =
∑
N∈2Z

ψ

(
x

N

)
m(ξ)

=
∑
N∈2Z

ψN (ξ)m(ξ)

=
∑
N∈2Z

mN (ξ).

Observation (3.3.2) guarantees us that, if |∇K| ≼ 1
|x|d+1 , then the Hörmander condition

holds. But we remember that K = m̌, hence:

|∇K| ≤
∑
N∈2Z

|∇(m̌N )|.

Let us estimate ∥xα∇m̌N∥L∞ . Remembering that ∥f∥L∞ ≤ ∥f̂∥L1 and that ∂αf̂ =
̂(

(−2πix)|x|αf
)
, we have that

∥xα∇m̌N∥L∞ ≼ ∥∂αξmN∥L1 .

It holds16:

|∂α(ξmN )| = |∂α(ξψN (ξ)m(ξ))| ≼
∑

α1+α2=α

|∂α1(ξm(ξ))||∂α2(ψN (ξ))|

=
∑

α1+α2=α

|∂α1(ξm)|

∣∣∣∣∣∂α2ψ

(
ξ

N

)∣∣∣∣∣
≼

∑
α1+α2=α

1

|ξ||α1|−1
N−|α2|

∣∣∣∣∣∂α2ψ

(
x

N

)∣∣∣∣∣
≼

∑
α1+α2=α

|ξ|1−|α1|N−|α2|

∣∣∣∣∣∂α2ψ

(
ξ

N

)∣∣∣∣∣ .

Idea The advantage of usingmN is that the function is now localized, i.e.
´
Rd =

´
|ξ|∼N . ⌟

15This is a standard abbreviation to write the dyadic numbers
16we remember that |∂α1m| ≼ 1

|ξ||α1
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Proceeding in the computation we get:

∥xα∇m̌N∥L∞ ≤
∑

α1+α2=α

ˆ
Rd

|ξ|1−|α1|N−|α2||∂α2ψ

(
ξ

N

)
dξ

≤
∑

α1+α2=α

ˆ
|ξ|∼N

|ξ|1−|α1|N−|α2||∂α2ψ

(
ξ

N

)
dξ

=
∑

α1+α2=α

ˆ N

0
r1−|α1|rd−1drN−|α2|

≼
∑

α1+α2=α

N−|α2|Nd+1−|α2|

= Nd+1−|α|.

Let us now consider two cases: α = 0 and α = d+ 2:

α = 0 ⇒ |∇m̌N | ≤ Nd+1

α = d+ 2 ⇒ |xd+2∇m̌N | ≤ Nd+1−d−2 =
1

N

⇒ |∇m̌N | ≼ 1

N

1

xd+2

Thus:

|∇m̌N | ≤ min

(
Nd+1,

1

N

1

|x|d+2

)
.

In conclusion17:

|∇K| ≤
∑
N∈2Z

|∇(m̌N )| =
∑

N≥ 1
|x|

|∇(m̌N )|+
∑

N≤ 1
|x|

|∇(m̌N )|

≤
∑

N≥ 1
|x|

1

N

1

|x|d+2
+
∑

N≤ 1
|x|

Nd+1

≼
1

|x|d+1
.

Another classical use of this locator is in the PDEs theory, where it ensures the validity
of a chain rule for fractional derivatives.

17For dyadic sums it is true that
∑

N≥N0
N = 2

N0
and

∑
N≤N0

N = 2N0.
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