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Introduction

This dissertation is focused on the study of smooth four-manifolds. The world of four-
manifolds is particularly rich and presents himself as a sort of boundary case.

The dimension four is the smallest dimension in which there is a real difference
between the study of manifolds from a topological or differentiable point of view; on the
other side, the h−cobordism theorem, that is a very useful technical tool in the study of
the smooth (simply-connected) manifolds of dimension ≥ 5, fails in dimension four (see
Donaldson in [9]). Nonetheless this theorem still holds in its topological version.

In fact there is a good comprehension of the four-manifolds from a topological point
of view: their topology is largely ruled by their intersection form.

Recall that if M is an oriented four-manifold one can define the intersection form as
the symmetric bilinear form

QM : H2(M ;Z)×H2(M ;Z)! Z

obtained by setting QM (a, b) =< a ^ b, [M ] >, where [M ] denotes the fundamental class
of M .

If M is closed, in virtue of the Poincaré Duality, we have that QM is unimodular,
after having modded out the torsion of H2(M ;Z), and we have the following classification
theorem:

Theorem 0.0.1 (Freedman). Two simply connected closed smooth four-manifolds are
homeomorphic if and only if they have isomorphic intersection forms.

In the ′80’s Donaldson introduced in [10] an extremely innovative, and equally
complicated, approach to the study of smooth four-manifolds. He introduced some
gauge-theoretic invariants, and proved that many topological four-manifolds do not admit
any smooth structure.

He also gave a strong restriction to the symmetric forms that can occur as intersection
forms of a smooth four-manifold, with the following celebrated result.

Theorem 0.0.2 (Donaldson). If M is a closed and simply connected smooth four-
manifold with positive definite intersection form, then QM is congruent (over the integers)
to the identity matrix.

iv



INTRODUCTION v

Among the important consequences of this theorem there is the existence of exotic
R4’s, i.e. smooth structures on R4 not diffeomorphic to the euclidean one. Actually, the
situation is even worse: Taubes proved in [11] that there exists a continuum of mutually
non-diffeomorphic exotic structures on R4, whereas if n 6= 4 there are no exotic structures
on Rn, as Stallings proved in [12].

In 1994, on the heels of Donaldson’s work, Witten introduced in [41] some new
invariants for a closed and orientable smooth four-manifold M , based on some preceding
works with Seiberg. These invariants are called indeed the Seiberg-Witten invariants.

Their definition depends, at least a priori, on the choice of a riemannian metric on
M , and therefore it is natural to look for some correlations between the values of these
invariants and the properties of the possible riemannian metrics on M .

In this direction, Witten proved in [41] the following theorem:

Theorem 0.0.3. Let M be a closed and oriented smooth four-manifold with b+2 (M) ≥ 2.
If M admits a riemannian metric of positive scalar curvature, then all the Seiberg-Witten
invariants of M vanish.

In 2001, Claude LeBrun claimed the following conjecture.

Conjecture 0.0.4. Let M be a compact hyperbolic four-manifold. Then all the Seiberg-
Witten invariants of M vanish.

By now we are not even close to prove or find a counterexample to such a statement,
also because of the lack of examples of hyperbolic four-manifolds, and the aim of this
thesis is to describe a way to construct some particular hyperbolic four-manifolds for
which these invariants all vanish, following the methods of Agol and Lin [23].

The dissertation is organized in the following way:

• in the first chapter we define the Seiberg-Witten equations: if σ is a spinC structure
on a closed oriented riemannian manifold (M, g), we are interested in the pairs
(A,ψ), where A is a U(1)-connection on the determinant line bundle associated to
σ and ψ is a section of the positive spinor bundle S+, which are solutions of

SW(A,ψ) =
{
DAψ = 0
F+
A = q(ψ) = 1

2(ψ̄ ⊗ ψ − |ψ|
2

2 Id).

Here DA denotes the Dirac operator associated to the connection A and the metric
g, F+

A is the self-dual part of the curvature 2-form of A and q(ψ) is a traceless
symmetric endomorphism of the bundle S+.
We provide all the background needed to understand what has just been written
and we briefly outline the way to obtain invariants out of these equations.
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• the hyperbolic four-manifolds obtained by Agol and Lin in their work belong to
the family of the arithmetic hyperbolic manifolds. Therefore in the second and in
the third chapter we focus our attention on the theory of arithmetic groups and
arithmetic manifolds. The latter are defined as quotients of Hn by the action of
some particular discrete and torsion-free subgroups of Isom(Hn). The methods
employed to find such subgroups are purely arithmetic and this makes it easy to
handle arithmetic manifolds with algebraic tools.
In particular, our main interest is to study some embedding results for arithmetic
manifolds, and in the third chapter we state and prove the following theorem,
presented by Kolpakov, Reid and Slavich in [22]. If Γ is a group, the symbol Γ(2)

denotes the subgroup generated by {γ2 | γ ∈ Γ}.

Theorem 0.0.5. Let n ≥ 2 and let M = Hn/Γ be an orientable arithmetic
hyperbolic manifold of simplest type.

– If n is even, then M embeds as a totally geodesic submanifold of an orientable
arithmetic hyperbolic manifold W of dimension n+ 1.

– If n is odd, then the manifold M (2) = Hn/Γ(2) embeds as a totally geodesic
submanifold of an orientable arithmetic hyperbolic manifold W of dimension
n+ 1.

Moreover, if M is not defined over Q the manifold W can be taken to be closed.

• we finally explain how to obtain hyperbolic four-manifolds with vanishing Seiberg-
Witten invariants.
The construction is based on the following vanishing result:

Proposition 0.0.6. Let M be a four-manifold given as M = M1 ∪Y M2. Suppose
that the separating hypersurface Y is an L-space and that b+2 (Mi) ≥ 1. Then all
the Seiberg-Witten invariants of M vanish.

In virtue of this proposition and of the embedding result of Chapter 3 the path to
follow is quite clear, and we dwell into the details in the fourth chapter.
We conclude this chapter by outlining how the construction of Agol and Lin can be
used to exhibit infinitely many commensurability classes of arithmetic hyperbolic
four-manifolds containing representatives with vanishing Seiberg-Witten invariants,
and how to get non-arithmetic examples out of these.



Chapter 1

Seiberg-Witten Invariants

In this first chapter we briefly describe the Seiberg-Witten equations and sketch the way
to obtain the Seiberg-Witten invariants out of these. In order to do so, we recall some
basic notions about bundles and we introduce the notions of spin and spinC structures.

Throughout this dissertation, unless otherwise specifically stated, all manifolds are
assumed to be smooth and connected and all functions are assumed to be smooth.

1.1 Bundles
We recall two equivalent definitions of fibre bundle. The first has the pro of stating
explicitly what a fibre bundle wants to be, namely a local projection, while the second
catches in some way the combinatorial side of this object.

Definition 1.1.1. Let F be a manifold. A fibre bundle with fibre F is a map

π : E !M

between two manifolds E andM , called the total space and the base space, that satisfies the
following local triviality condition: every p ∈M has an open trivialising neighbourhood
U ⊂ M whose counterimage π−1(U) is diffeomorphic to a product U × F via a map
ϕ : π−1(U)! U × F such that the following diagram commutes:

π−1(U) ϕ //

π

##

U × F
π1

||
U

where π1 : U × F ! U denotes the projection onto the first factor.

Example 1.1.2. The trivial bundle is given by the product E = M × F and the
projection π : E !M onto the first factor.

1
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Example 1.1.3. The tangent bundle TM of a n-dimensional manifold M is a fibre
bundle with fibre Rn. In this case every fibre has the structure of vector space.

Definition 1.1.4. A bundle map between two fibre bundles π : E !M and π′ : E′ !M
is a map ϕ : E ! E′ such that the following diagram commutes:

E
ϕ //

π

  

E′

π′

~~
M

We say that a bundle map ϕ is an isomorphism if it is a diffeomorphism.

Now we give the second definition of fibre bundle, which is presented as an appropriate
gluing of trivial patches.

Definition 1.1.5. Let M and F be two manifolds. A fibre bundle with base space M
and fibre F is the datum of the following objects:

• an open cover (Uα)α∈Λ of M , called trivialising cover, where Λ is a set of indices;

• a gluing cocycle, i. e. a collection of maps

gαβ : Uαβ ! Diffeo(F )

where Uαβ = Uα ∩ Uβ, satisfying the following cocycle conditions:

1. gαα(p) = IdF for every p ∈ Uα and for every α ∈ Λ;
2. gβγ(p) ◦ gαβ(p) = gαγ(p) for every p ∈ Uα ∩Uβ ∩Uγ whenever this intersection

is non empty and for all α, β, γ ∈ Λ.

Remark 1.1.6. We do not require the maps gαβ to be smooth since we are not dealing
with the problem of giving a smooth structure to the space Diffeo(F ). In the cases of
our interest the maps gαβ will have image in subgroups of Diffeo(F ) that will clearly be
manifolds, so it will make sense to speak about smooth maps.

We impose by default that two fibre bundles are equivalent if one is obtained from
the other by refining the trivialising cover and by restricting the gluing cocycle.

There is an analogous definition of bundle map.

Definition 1.1.7. A bundle map between two bundles with fibre F and base space M
(Uα, gαβ)α,β∈Λ and (Uα, g′αβ)α,β∈Λ is a family of functions

Tα : Uα ! C∞(F, F )

such that Tβ(p) ◦ gαβ(p) = g′αβ(p) ◦ Tα(p) for every p ∈ Uαβ and for every α, β ∈ Λ.
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We say that a bundle map is an isomorphism if the functions Tα take values in
Diffeo(F ).

It is not difficult to prove the equivalence between these two definitions. Indeed,
given a trivialising cover {Uα}α∈Λ and a gluing cocycle {gαβ}α,β∈Λ we can define a fibre
bundle, according to the first definition, in the following way: consider the set

E =
⊔
α

(Uα × F )
∼

where we set (x, f) ∈ Uα × F equivalent to (x′, f ′) ∈ Uβ × F if and only if x = x′ and
f ′ = gαβ(x)(f); it is not difficult to show that there exists a unique smooth structure
on E such that the projection π : E ! B is a fibre bundle, with {Uα}α∈Λ as trivialising
cover.

On the other side, a fibre bundle π : E ! B with fibre F carries all the information
needed to define a gluing cocycle and a trivialising cover: the latter is obtained by
considering the trivialising neighbourhoods given by the definition, and the former is
obtained by following the upper row of this diagram from left to right:

(Uα ∩ Uβ)× F

π1
((

π−1(Uα ∩ Uβ)ϕαoo
ϕβ //

π

��

(Uα ∩ Uβ)× F

π1
vv

Uα ∩ Uβ
It is not difficult to prove that doing these procedures back and forth yields isomorphic
fibre bundles, and so from now on we will switch between the two definitions, choosing
the one which fits better the need.

Also notice that the definition 1.1.7 of bundle map is given in a way that the functions
Tα provide a well-defined global map under the above defined equivalence relations.

1.1.1 Vector bundles and principal bundles

We now recall the definition of vector bundle and we exploit some insights that the second
definition of fibre bundle allows us to grasp.
Definition 1.1.8. A vector bundle is a fibre bundle π : E !M where the fibre of every
point p ∈ M has an additional structure of a real vector space of some dimension k,
compatible with the smooth structure in the following way: every p ∈M must have a
trivialising open neighbourhood U such that the following diagram commutes:

π−1(U) ϕ //

π

##

U × Rk
π1

{{
U

via a diffeomorphism ϕ that sends every fibre π−1(p) to Rk×{p} isomorphically as vector
spaces.
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The property required in the definition of vector space is equivalent to the request
that the gluing cocycle takes values in GL(k,R); in fact in this way it is possible to
endow each fibre with a well-defined vector space structure, compatible with the local
trivialisations. We call GL(k,R) the structure group of the vector bundle E, and E is
also called GL(k,R)-bundle.

Therefore in some way we can get additional structure on the fibre bundle by asking
the cocycle to take values in some specific subgroup of the diffeomorphisms group of the
fibre.

We now proceed in this direction and the following definition is the first step to take.

Definition 1.1.9. Let G be a Lie group. A principal G-bundle is a fibre bundle
π : P !M together with a smooth right action P ×G! P such that G preserves the
fibres of P and acts freely and transitively on them in such a way that for each x ∈M
and y ∈ Px, the map

G! Px

g 7! yg

is a diffeomorphism.

Remark 1.1.10. Here are some comments regarding this definition.

• In a G-principal bundle the fibres have the structure of G-torsors. A G-torsor is a
space onto which G acts freely and transitively. It is diffeomorphic to G but lacks
a group structure since there is no preferred choice of an identity element.
In particular, it is easy to show that a principal bundle is trivial if and only if it
admits a section, since this can be used to define a smooth choice of an identity
element in each fibre.

• As a consequence of the previous remark we can suppose that in the local triviali-
sations the right action of G on the fibres becomes the right multiplication of G
on itself. In fact on a trivialising neighbourhood U we can consider a local section
s : U ! π−1(U) and define a trivialisation ϕ by

ϕ−1 : U ×G!π−1(U)
(x, g) 7!s(x)g.

It follows by construction that ϕ satisfies ϕ(yg) = (ϕ1(y), ϕ2(y)g) for every y ∈ P
and for every g ∈ G.
Moreover the gluing cocycle associated to a trivialising cover composed by such
open sets takes values in G ⊂ Diffeo(G), acting via left multiplication.
For every x ∈ Uαβ in fact the transition function gαβ(x) : G ! G preserves the
right multiplication of G on itself, and hence satisfies gαβ(x)(gh) = gαβ(g)h. This
implies that gαβ(x) coincides with the left multiplication by gαβ(x)(eG).
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• Clearly every fibre bundle with G-valued gluing cocycle has a natural structure of
G-principal bundle. In fact the left multiplication used to glue the local trivialisation
commutes with the right multiplication of G on itself. Hence the latter globalises
to a well-defined right action of G on the fibres of such a bundle, satisfying all the
required properties.

1.1.2 Structure groups and reduction of structure groups

Definition 1.1.11. Let V be a vector space and let ρ : G! GL(V ) be a representation
of G. We say that a vector bundle E ! M has structure group G, and we call it
G-bundle, if the gluing cocycle has the form (Uα, ϕαβ) where ϕαβ = ρ ◦ gαβ for some
cocycle gαβ : Uαβ ! G.

Thus every G-bundle carries with itself a G-principal bundle, obtained by letting
the cocycle {gαβ} act on G by left multiplication. On the other side a whole family
of G-bundles is associated to every G-principal bundle P . They are called indeed
associated bundles and they are obtained by considering all the representations of G and
by composing the cocycle of P with them.

Example 1.1.12. One important example of associated bundle is the one defined via
the adjoint representation of G on its Lie algebra g = Lie(G):

Ad : G!GL(g)
g 7!Adg

where Adg is the differential at the identity of the conjugation by g. We denote this
bundle as AdG(P ) where P is the G-principal bundle, or AdG(E) if we want to stress the
dependence on some fixed G-bundle E, and we will omit the subscript when the group
will be clear from the context.

Definition 1.1.13. Let H and G be two Lie groups and f : H ! G be a Lie groups
homomorphism. Given a G-bundle E !M with G-principal bundle PG !M , we say
that a reduction of the structure group from G to H is a map PH ! PG, where PH is a
H-principal bundle, such that for every trivialising neighbourhood the following diagram
commutes:

π−1
H (Uα) //

∼

��

π−1
G (Uα)

∼

��
Uα ×H

Id×f //

π1 $$

Uα ×G

π1zz
Uα

where πG and πH denote the projections πG : PG !M and πH : PH !M .
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The last definition may seem a little obscure, but it can be easily stated in terms of
cocycles: a G-bundle admits a reduction of the structure group to H if and only if it
admits a gluing cocycle gαβ : Uαβ ! G such that the following diagram commutes:

H

f
��

Uαβ gαβ
//

hαβ
==

G

for some cocycle hαβ : Uαβ ! H.

Example 1.1.14. As we already observed every vector bundle of rank n is by definition
a GL(n,R)-bundle. If in addition the bundle is oriented, then the structure group reduces
to G = GL+(n,R) and the principal bundle it defines is the bundle of the oriented
frames. If an oriented vector bundle is equipped with a riemannian metric then the
structure group reduces to SO(n,R) and the principal bundle is the bundle of the oriented
orthonormal frames.
If a real vector bundle of rank 2n is equipped with a complex structure then the structure
group reduces to GL(n,C) ⊂ GL(2n,R) and the principal bundle is the bundle of the
complex bases. If in addition it is equipped with a Hermitian structure then the structure
group reduces to U(n) and the principal bundle is the bundle of the unitary bases.

1.1.3 Connections and curvature

We denote by Γ(E) the space of sections of the bundle E !M .

Definition 1.1.15. Let E ! M be a vector bundle. A connection on E is a linear
operator ∇ : Γ(E)! Γ(E ⊗ T ∗M) such that

∇(fs) = f∇s+ s⊗ df

for every f : M ! R and s ∈ Γ(E).

We also recall what a covariant derivative is.

Definition 1.1.16. Let E ! M be a vector bundle. A covariant derivative on E is a
map ∇ : Γ(TM)× Γ(E)! Γ(E) satisfying the following properties:

• ∇ is R-bilinear;

• ∇ is C∞-linear in the first component, i. e. ∇fV s = f∇V s for every f ∈ C∞(M),
V ∈ Γ(TM) and s ∈ Γ(E);

• ∇V (fs) = f∇V s+ df(V )s for every f ∈ C∞(M), V ∈ Γ(TM) and s ∈ Γ(E).

It is clear that covariant derivatives and connections express the same concept.
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Remark 1.1.17. The space of connections on a vector bundle E !M is an affine space.
In fact it is easy to show that the difference of two connections ∇−∇′ acts on sections
as multiplication by a End(E)-valued 1-form, i.e. an element in Γ(End(E)⊗ T ∗M). We
also denote this space by Ω1(M,End(E)).

In particular in a vector bundle atlas (Uα, ϕα)α∈Λ a connection can be represented by
a collection of matrix-valued 1-forms Aα ∈ Ω1(Uα,Mat(n,R)), called connection forms,
via

(∇s)α = dsα +Aαsα

where the matrix-valued 1-forms Aα’s satisfy:

Aβ = g−1
αβdgαβ + g−1

αβAαgαβ

where dgαβ is the matrix made from the differentials of the matrix-components of
the map gαβ and the multiplication is the multiplication of matrices.

Suppose that the bundle E has structure group G and that (Uα, ϕα)α∈Λ is a vector
bundle atlas with transition maps gαβ : Uαβ ! G

ρ
! GL(n,R). A connection ∇ is called

a G-connection if all the matrix-valued 1-forms factorise through g-valued 1-forms.
This means that theAα’s, which belong to Γ(Mat(n,R)⊗T ∗Uα) = Γ(Hom(TUα,Mat(n,R))),

pointwise factorise in the following way:

g

ρ∗
��

Tp(Uα) Aα(p)//

Bα(p)
88

Mat(n,R)

where Bα is an element of Γ(Hom(TUα, g)) and where ρ∗ denotes the differential at the
identity of the representation ρ.

It can be shown that every G-bundle admits a G-connection, and a proof can be
found in [2].

Example 1.1.18. Let M be a riemannian manifold and let ∇ be a connection on TM .
The connection forms Aα by the very definition are

Akj = Γkijdxi

where Γkij are the Christoffel symbols of the connection. The compatibility condition
of ∇ with the metric is exactly equivalent to ∇ being a O(n)-connection. In fact if
{ei, . . . , en} is an orthonormal local frame we have that ∇ is compatible if and only if for
every v ∈ TxM it holds:

0 = v < ei, ej >=< A(v)ei, ej > + < ei, A(v)ej >= Aji (v) +Aij(v).

In other words ∇ is compatible if and only if the local forms Aα take values in the vector
space of the skew-symmetric matrices, that is the Lie algebra of O(n).
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We end this section by recalling the notion of curvature of a connection and the form
it assumes locally.

Definition 1.1.19. Let E !M be a vector bundle with connection ∇. The curvature
of ∇ is the endomorphism-valued 2-form F∇ ∈ Ω2(M,End(E)) defined by

F∇(V,W )s = ∇V∇W s−∇W∇V s+∇[V,W ]s

As well as the connection, the curvature can be represented in the local trivialisations.
In this case we get a family of local matrix-valued 2-forms, called the curvature forms
F∇α , and they are described explictly in function of the connection forms by the formulas

Fα = dAα +Aα ∧Aα

where Aα ∧Aα denotes the matrix of 2-forms obtained by multiplying Aα with itself in a
combination of matrix multiplication and exterior product of forms.

If G is the structure group of the fibre bundle and the connection ∇ is G-compatible
then it is possible to show that also the connection forms factorise through the Lie algebra
g.

The transition formulas for the Fα’s on the overlaps Uαβ are

Fα = gαβFβg
−1
αβ

and in particular if G is abelian then F∇ is simply a global matrix-valued 2-form.

1.2 Characteristic classes
In this section we recall the definition of two types of characteristic classes associated to
vector bundles, namely the Stiefel-Whitney classes and the Chern classes. The former
are defined for real vector bundles and are Z/2Z-cohomology classes, while the latter are
defined for complex vector bundles and are Z-cohomology classes.

We refer to [8] and [16] for exhaustive discussions of these topics.

1.2.1 Stiefel-Whitney classes

The following is the fundamental result about Stiefel-Whitney classes.

Theorem 1.2.1. There is a unique sequence of functions w1, w2, . . . assigning to each real
vector bundle E !M a class wi(E) ∈ H i(M ;Z/2Z), depending only on the isomorphism
type of E, such that:

• wi(f∗(E)) = f∗(wi(E)) for every f : N !M .

• if E1 and E2 are real vector bundles over M then w(E1 ⊕ E2) = w(E1) ^ w(E2)
for w = 1 + w1 + w2 + · · · ∈ H∗(M ;Z/2Z).

• wi(E) = 0 if i > rank E.
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• for the tautological line bundle E ! RP1, w(E) is 1 + a, where a is the generator
of H1(RP1,Z/2Z).

There are several ways to define the Stiefel-Whitney classes and they are all equiva-
lent in virtue of the previous theorem. Here we briefly show how to define them in an
obstruction theoretic fashion, adapting what is exposed in [16].

Let E ! M be a rank-n vector bundle and let k be a positive integer, k ≤ n. The
problem we want to address is to find k linearly independent sections of this bundle.

The first step to take is to reduce the problem of finding k linearly independent
sections to the problem of finding one section of an appropriate bundle. Observe that
thanks to the Gram-Schmidt process we can equivalently find k orthonormal sections of
our vector bundle.

We consider the bundle Vk(Rn) ! Vk(E) ! M whose fibre over a point p ∈ M is
the set of all the orthonormal k-frames of Ep. The space Vk(Rn) is called the Stiefel
manifold, and it follows by definition that the vector bundle E !M admits a k-frame if
and only if the fibre bundle Vk(E)!M admits a section.

For what is to follow we need some information on the homotopy type of Vk(Rn). We
state the following lemma, whose proof can be found in [16].

Lemma 1.2.2. The first non-vanishing homotopy group of Vk(Rn) is πn−k which is Z if
n− k is even or k = 1, and Z/2Z otherwise.

We now try to inductively define a section for the bundle Vk(E)!M . Fix an auxiliary
CW -decomposition of M and denote by Mj the j-skeleton of such decomposition. We
assume that Mj admits a section and we try to extend it to the higher skeleton Mj+1.
Let f : Dj+1 !M be the characteristic map of a (j + 1)-cell. Since Dj+1 is contractible,
the pullback f∗(E) is trivial1 and so we simply have to find a map Dj+1 ! Vk(Rn) which
extends the already defined section on its boundary Sj and this is possible if and only if
the latter is nullhomotopic.

Clearly a section on M0 exists and thanks to the lemma 1.2.2 we can extend it up to
the (n− k)-skeleton and we can define a cochain by assigning to each (n− k+ 1)-cell the
modulo 2 homotopy class of the map Sn−k ! Vk(Rn) provided by the already defined
section on the (n− k)-skeleton. One can show that this cochain is in fact a cocycle, that
its cohomology class does not depend on the choices we have made in this construction
and that the requests of Theorem 1.2.1 are fulfilled. To fill these details we refer to [16].

In other words we have seen that the l-th Stiefel-Whitney class wl(E) of a rank n
vector bundle is the modulo 2 primary obstruction to the existence of n− l + 1 linearly
independent sections on the l-skeleton of M .

Remark 1.2.3. Notice that the above construction deserves a little comment in case of
l = 1. In fact in this case we deal with maps {−1,+1} = S0 ! Vn(Rn) and π0(Vn(Rn))

1for a proof cfr. [1].
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cannot be identified canonically with Z/2Z. So we simply assign 0 if the images of +1
and −1 belong to the same connected components and 1 otherwise. Therefore w1(E) is
a complete obstruction.

In particular w1(E) vanishes if and only if the bundle is orientable. In fact the
following equivalences hold:

w1(E) vanishes⇔ E|M1 is trivial⇔ det(E) is trivial on M ⇔ E is orientable

where det(E) is the line bundle with transition functions det(gαβ)2, having denoted by
{gαβ} the transition functions for the bundle E !M . The last equivalence is therefore
obvious and the second follows from the observation that a line bundle is trivial if and
only if it is trivial on the 1-skeleton, since a section can be easily extended on the whole
manifold cell by cell.

We will denote with wi(M) the i-th Stiefel Whitney class of the tangent bundle of M .

1.2.2 Chern classes and Chern-Weyl theory

From an axiomatic point of view for the Chern classes, as for the Stiefel-Whitney classes,
this is the fundamental result.

Theorem 1.2.4. There is a unique sequence of functions c1, c2, . . . assigning to each
complex vector bundle E ! M a class ci(E) ∈ H2i(M ;Z), depending only on the
isomorphism type of E, such that:

• ci(f∗(E)) = f∗(ci(E)) for every f : N !M .

• if E1 and E2 are complex vector bundles over M then c(E1 ⊕E2) = c(E1) ^ c(E2)
for c = 1 + c1 + c2 + · · · ∈ H∗(M ;Z).

• ci(E) = 0 if i > rank E.

• for the tautological line bundle E ! CPn, c(E) is 1−H, where H is Poincaré dual
to the hyperplane CPn−1 ⊂ CPn.

In order to define the Chern classes one can adapt the argument used to construct
the Stiefel-Whitney classes: one can consider the complex Stiefel manifold Vn−k(Cn),
analyse its homotopy groups, and study the obstruction to define a unitary k-frame3.

Notice that this definition of the Chern classes implies evidently that for a complex
bundle w2k is equal to the mod 2 reduction of ck.

Anyway we also introduce them via the Chern-Weyl method. This is a conceptually
different approach that relies on the theory we have introduced so far about connections.

2it coincides with Λn(E) if the bundle has rank n.
3As it is proved in [1] the first non trivial homotopy group of this manifold is π2k+1(Vn−k(Cn)) that is

isomorphic to Z.
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If E ! M is a complex vector bundle, then the set of sections Γ(E) is a module
over the ring of all complex-valued functions on M , which we denote by C∞(M ;C). It
obviously holds C∞(M ;C) = C∞(M)⊗C. Analogously, one can define complex k-forms
as

Ωk(M ;C) = Ωk(M)⊗ C

and exterior differentiation of complex forms by extending linearly over C the usual
exterior differentiation

d : Ωk(M)! Ωk+1(M).

By definition the complex de Rham cohomology of M is the cohomology of such cochain
complex and is denoted by H∗DR(M ;C). The goal is to obtain singular cohomology classes
by computing de Rham cohomology classes. The bridge between these two objects is
given by the de Rham theorem, whose proof can be found in [7]. It asserts that there
exists an isomorphism

H∗DR(M) ∼= H∗(M ;R)

and in particular this clearly implies

H∗DR(M ;C) = H∗DR(M)⊗ C ∼= H∗(M ;R)⊗ C = H∗(M ;C)

Of course, the definitions of connections and curvature can be easily generalised to
the case of complex vector bundles and the connection forms and curvature forms are
respectively local complex 1-forms and local gl(n,C)-valued 2-forms. The transformation
formulas

Fα = gαβFβg
−1
αβ

remain the same except that the transition functions {gαβ} take values in GL(n,C).

Definition 1.2.5. A polynomial function

f : gl(n,C)! C

is said to be an invariant polynomial if f(X) = f(A−1XA) for every A ∈ GL(n,C).

Simple examples of invariant polynomials include the trace and the determinant. In
general, we recall that the k-th elementary symmetric polynomial of n-variables σk is
defined as

σk(x1, . . . , xn) =
∑

j1<···<jk
xj1 . . . xjk .

If we denote by σk(X) the k-th elementary symmetric function of the eigenvalues of the
matrix X it is easy to observe that σk(X) is an invariant polynomial by writing the
equation

det(Id + tX) = 1 + tσ1(X) + · · ·+ tnσn(X).

Now if f is a homogeneous invariant polynomial of degree k and ∇ is a connection on
the complex vector bundle E !M we can compute on every trivialising neighbourhood
Uα the 2k-form f(F∇α ).
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Since f(F∇α ) = f(F∇β ) on Uα ∩ Uβ by invariance, we have a globally defined 2k-form,
say f(F ) ∈ Ω2k(M). One can show that for any invariant polynomial f of degree k
the form f(F ) is closed and its cohomology class does not depend on the choice of the
connection ∇.
Definition 1.2.6. For any complex vector bundle E !M of rank n the Chern class of
degree k is defined as the cohomology class ck(E) ∈ H2k(M ;C) corresponding to the
invariant polynomial (−1

2πi

)k
σk.

In terms of the curvature form we have

det
(
Id− 1

2πiF
)

= 1 + c1(E) + · · ·+ cn(E) ∈ H∗(M ;C)

which is called the total Chern class and denoted by c(E).
Of course these cohomology classes do not fit yet the statement of the Theorem 1.2.4,

but it is not difficult to show that indeed they are integral classes and that they satisfy
all the required axioms required. We refer to [7] for a proof.

1.3 The Clifford algebra and its representations
In this section we introduce the groups Spin and SpinC. In order to do this, we define
the Clifford algebra associated to a real vector space and recall some of its properties.
Everything we will discuss is widely described in [6] and [4].

We first prove the following basic fact about special orthogonal groups.
Lemma 1.3.1. The fundamental group of SO(n) is Z if n = 2 and Z/2Z if n ≥ 3.
Proof. The case when n = 2 is obvious since SO(2) ∼= S1. When n = 3 we know that for
each element f in SO(3) there exists a basis B of R3 such that the matrix associated to
f in the basis B has the form [

1 0
0 Rθ

]
where Rθ denotes the rotation of angle θ, and 0 ≤ θ ≤ π. So we have a map

F : D3 ! SO(3)
v 7! Rotv||v||π

where Rotv||v||π denotes the rotation of angle ||v||π along the line spanned by v. It is easy
to show that F induces a homeomorphism RP3 ∼= SO(3).

If n > 3 it is enough to consider the fibration SO(n) ! Sn−1 defined by A 7! Aen,
whose fibre is SO(n− 1). The induced long exact sequence of homotopy groups yields:

· · ·! π2(Sn−1)! π1(SOn−1)! π1(SOn)! π1(Sn−1)! π0(SOn−1)! . . .

and since n > 3 we get π1(SO(n− 1)) ∼= π1(SO(n)).
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Definition 1.3.2. The Spin group Spin(n) is the connected double cover of SO(n).

Example 1.3.3. Spin(2) is S1 and Spin(3) is S3. It is not so easy to describe Spin(n) for
n > 3: it can be shown by using quaternions that Spin(4) = S3 × S3 and this approach
can be, in a certain way, generalised to construct Spin(n) as a subgroup of the Clifford
algebra associated to Rn, as we will see later.

Thanks to lemma 1.3.1 we have that Spin(n) is simply connected for n ≥ 3. It is in
general true that the universal cover of a Lie group is a Lie group, since it is easy to lift
along the covering the operation of the base space, and so Spin(n) is itself a Lie group.

We now introduce an algebraic way to define the group Spin(n) and we recall the
basic results regarding the representations of the spin groups.

Let V be a finite dimensional oriented vector space over R with a positive definite
inner product <,> inducing a norm denoted || · ||. Let T (V ) denote the tensor algebra

T (V ) =
⊕
n≥0

V ⊗n

Definition 1.3.4. The Clifford algebra Cl(V ) generated by (V,<,>) is the quotient of
T (V ) by the two-sided ideal generated by all elements of the form

v ⊗ v + ||v||21

for v ∈ V .

There is an obvious map i : V ! Cl(V ), which is in fact an inclusion.
The Clifford algebra satisfies the following universal property: for every associative

algebra A and for every linear map ϕ : V ! A such that ϕ(v)ϕ(v) = −||v||2 ∀v ∈ V there
exists a unique algebra homomorphism f : Cl(V )! A such that the following diagram
commutes:

V
ϕ //

i
��

A

Cl(V )

f

77

Notice that the grading on T (V ) descends to a Z/2Z grading on Cl(V ). This
decomposes Cl(V ) as Cl0(V ) ⊕ Cl1(V ) where Cl0(V ) is a subalgebra and Cl1(V ) is a
module over this subalgebra. If we fix an orthonormal basis {e1, . . . , en} for V we can
write Cl(V ) as the algebra over R generated by {e1, . . . , en} subject to the relations
e2
i = −1 for i ≤ n and ei · ej = −ej · ei for i 6= j.

In particular we have that every element of Cl(V ) can be written uniquely as a sum
of products of the form

ei1 · · · eik
where i1 < · · · < ik. In particular, Cl(V ) has dimension 2n. Moreover the elements in
Cl0(V ) (respectively, Cl1(V )) are those that can be written as sum of products of an
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even (respectively, odd) number of these generators.

Let Cl∗(V ) denote the multiplicative groups of units of Cl(V ).

Definition 1.3.5. The group Pin(V ) is the subgroup of Cl∗(V ) generated by the elements
v ∈ V such that ||v||2 = 1. The group Spin(V ) is the intersection of Pin(V ) with Cl0(V ).

Remark 1.3.6. If {e1, . . . , en} is an orthonormal basis for V then every product ei1 · · · eik
is an element of Pin(V ). This implies that Cl(V ) is the smallest algebra over R containing
Pin(V ) as a subgroup of its multiplicative group of units. Analogously, Spin(V ) cointains
a basis for Cl0(V ).

The previous remark implies that a representation of Cl(V ) (respectively, Cl0 V ) is
uniquely determined by its behaviour on Pin(V ) (respectively, Spin(V )).

The groups SO(V ) and Spin(V ) can be related in the following way. There is an
inclusion of O(V ) in the algebra automorphisms of Cl(V ), and this can be seen by
using the universal property of the Clifford algebra. It is easy to see that the image of
this embedding consists of all the algebra automorphisms that preserve the subspace
V ⊂ Cl(V ). Analogously SO(V ) can be seen as the algebra automorphisms of Cl(V ) that
preserve V and its orientation. The group Spin(V ) acts on Cl(V ) by conjugation and
the following result holds.

Proposition 1.3.7. The conjugation action of Spin(V ) on the Clifford algebra induces
a representation of Spin(V ) as automorphism of Cl(V ).

The image of this representation consists of automorphisms which preserve V and
its orientation. Therefore there is an induced surjective map Spin(V )! SO(V ), whose
kernel is ±1.

Hence it is a covering map, and if the dimension of V is at least two it is a non
trivial double covering.

1.3.1 The representations of the Clifford algebra

Here we collect some results about the (complex) representations of the Clifford algebra
associated to the vector space V . What we are going to present here will be useful in the
next section, where we will consider bundles with structure group Spin.

Recall that V is an oriented finite dimensional real vector space endowed with a
positive definite inner product <,>. We consider the complexified Clifford algebra
Cl(V )⊗RC, which is a complex algebra. We fix a positive orthonormal basis {e1, . . . , en}
of V and define the element:

ωC = ib
n+1

2 ce1 · · · en.

By direct computation one shows that ω2
C = 1 and that ωC does not depend on the choice

of the orthonormal positive basis.
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Therefore we get a canonical decomposition of the complexified Clifford algebra
Cl(V ) ⊗R C = (Cl(V ) ⊗R C)+ ⊕ (Cl(V ) ⊗R C)−, where (Cl(V ) ⊗R C)± denote the
eigeinspace of ±1 relative to the action of ωC by left multiplication.

Moreover when the dimension of V is odd ωC is in the center of Cl(V ) ⊗ C, while
if the dimension of V is even then ωC is an element of the center of Cl0(V ) ⊗ C and
anticommutes with elements in Cl1(V )⊗C. In particular, in this case we have the further
decompositions

Cl0(V )⊗ C = (Cl0(V )⊗ C)+ ⊕ (Cl0(V )⊗ C)−

Cl1(V )⊗ C = (Cl1(V )⊗ C)+ ⊕ (Cl1(V )⊗ C)−.

The following theorem is the fundamental result about the representation of the (complex)
Clifford algebra. For a proof we refer to [4] and [6].
Theorem 1.3.8. If the dimension of V is n = 2m, then Cl(V ) has a unique irreducible,
finite dimensional, complex representation SC(V ) up to isomorphism. Any such repre-
sentation has dimension 2m and the action of Cl(V )⊗ C on SC(V ) induces an algebra
isomorphism

Cl(V )⊗ C! EndC(SC(V ))
If the dimension of V is 2m + 1 then Cl(V ) has exactly two irreducible, finite

dimensional, complex representations up to isomorphism. These induce isomorphic
representations SC(V ) of Cl0(V ) by restriction. Any such representation has dimension
2m and induces an algebra isomorphism

Cl0(V )⊗ C! EndC(SC(V )).

We will refer to the action of the Clifford algebra on SC(V ) as the Clifford multiplica-
tion.

As a consequence of this theorem we have that if the dimension of V is even and
SC(V ) is an irreducible (complex) representation of Cl(V ) ⊗ C, then the action of ωC
decomposes SC(V ) as the direct sum of the ±1-eigenspaces SC(V )±. This decomposition
is a decomposition of modules over Cl0(V )⊗C, while the action of Cl1(V )⊗C interchanges
SC(V )±. There are isomorphisms

(Cl0(V )⊗ C)+ ∼= EndC(SC(V )+)
(Cl0(V )⊗ C)− ∼= EndC(SC(V )−)
(Cl1(V )⊗ C)− ∼= HomC(SC(V )+, SC(V )−)
(Cl1(V )⊗ C)+ ∼= HomC(SC(V )−, SC(V )+).

Notice that in this way we get that SC(V )± are two inequivalents irriducible representation
for Cl0(V )⊗ C. This is not strange, since it can be shown that if the dimension of V is
even then Cl0(V )⊗ C ∼= Cl0(W )⊗ C where W ⊂ V is a codimension-1 subspace. Then
Theorem 1.3.8 confirms us that Cl0(V )⊗C has two inequivalent irriducible representations,
and that they are exactly two.

As a corollary of what shown until now we get the following:
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Corollary 1.3.9. The group Spin(V ) has a unique complex representation induced by
any irriducible complex finite dimensional representation of Cl(V ).

This representation is called the spin representation and denoted by

∆C : Spin(V )! AutC(SC).

If V has dimension 2m this representation splits into two inequivalent irriducible repre-
sentations ∆±C of dimension 2m−1 and if V has dimension 2m+ 1 then ∆C is irriducible
of dimension 2m.

Example 1.3.10. We know that Spin(3) = S3 ∼= SU(2). In this case the spin repre-
sentation ∆C is given by the action of SU(2) on C2. Analogously Spin(4) = S3 × S3 ∼=
SU(2)× SU(2) and the spin representations ∆±C are obtained as

SU(2)× SU(2) π
±
! SU(2) ↪! EndC(C2)

where π± are the projections on the first and second factor.

We conclude this subsection by highlighting a link between the Clifford algebra Cl(V )
and the exterior algebra Λ∗(V ).

The following notation will be used in the proof of the next proposition: we set Ft as
the image in Cl(V ) of F̃t = ⊕n≤tV ⊗n. Notice that {Ft} defines an increasing filtration

0 ⊂ F1 ⊂ F2 ⊂ . . .

of the Clifford algebra that is compatible with the multiplication in Cl(V ).

Proposition 1.3.11. There exists a natural vector space isomorphism Λ∗(V ) ∼= Cl(V ).

Proof. We define a map of the r-fold direct product fr : V × · · · × V ! Cl(V ) by setting

f(v1, . . . , vr) = 1
r!
∑
σ

sign(σ)vσ(1) . . . vσ(r)

where the sum is taken over the symmetric group on r elements. Clearly fr descends to a
linear map f̃r : Λr(V )! Cl(V ) whose image lies in Fr. The composition of f̃r with the
projection π : Fr ! Fr/Fr−1 is injective. In fact an element [xr] ∈ Λr(V ) is in the kernel
of π ◦ f̃r if and only if xr ∈ V ⊗r is the r-homogeneous part of x ∈ F̃r∩I, where I ⊂ T (V )
denotes the two-sided ideal generated by the elements of the form v ⊗ v + ||v||21.

Any such x can be written as a finite sum∑
i

ai ⊗ (vi ⊗ vi + ||v||2)⊗ bi

where vi ∈ V and ai and bi are of pure degree with deg ai + deg bi ≤ r − 2. The
r-homogeneous part of x is then of the form xr = ∑

i ai ⊗ vi ⊗ vi ⊗ bi, where the sum is
taken over the i’s such that deg ai + deg bi = r − 2, and hence [xr] = 0 in Λr(V ).

It follows that the direct sum of the maps f̃r is injective and hence an isomorphism
for dimensional reasons.
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1.3.2 The SpinC group

Definition 1.3.12. The group SpinC(V ) is the subgroup of the multiplicative group of
units of Cl(V )⊗ C generated by Spin(V ) and the unit circle U(1) of complex scalars.

Lemma 1.3.13. The group SpinC(V ) is isomorphic to Spin(V )×U(1)
< ±(1, 1) >

Proof. Since U(1) commutes with Spin(V ) the natural map

Spin(V )×U(1)! SpinC

is a well-defined surjective homomorphism. The kernel of this map consists of the pairs
(α, α−1) where α ∈ Spin(V ) ∩U(1), and this intersection is {±1}.

The group SpinC(V ) doubly covers SO(V ) × U(1) via the map induced by the
homomorphism:

Spin(V )×U(1)! SO(V )×U(1)
(α, z) 7! (π(α), z2)

where π : Spin(V ) ! SO(V ) denotes the double cover of Spin(V ) onto the special
orthogonal group.

Observe that the above map is the same map obtained by considering the pullback of
the following diagram

Spin(V ⊕ R2)

��
SO(V )× S1 � � // SO(V ⊕ R2).

Remark 1.3.14. Notice that Spin(V ) can be naturally identified as the subgroup

Spin(V )× {±1}
< ±(1, 1) >

of SpinC, and that any complex representation ρ : Spin(V ) ! GLC(W ) satisfying
ρ(−1) = −1 extends uniquely to a SpinC(V ) representation.

In particular this request is fulfilled for the spin representation ∆C : Spin(V ) !
GLC(SC(V )), since it is the restriction of a representation of the C-algebra Cl(V )⊗ C.

1.4 Spin and spinC structures
We now try to endow our manifolds with additional structures.

Definition 1.4.1. Let E ! M be an oriented rank-n vector bundle endowed with a
riemannian metric. A spin structure on E ! M is the choice of a reduction of the
structure group from SO(n) to Spin(n), where the map Spin(n)! SO(n) is the double
covering map.
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We say that a manifold M is spinnable if its tangent bundle admits a spin structure,
and in such cases we simply say that M is endowed with a spin structure.

Proposition 1.4.2. Let n ≥ 3 and let E ! M be a oriented vector bundle of rank n.
Then E !M admits a spin structure if and only if w2(E) = 0.

Proof. We only prove that admitting a spin structure implies w2(E) = 0. For the other
implication we refer to [17].

We fix a CW -decomposition of the manifoldM . Suppose E !M has a spin structure,
i.e. suppose that there exists a Spin(n)-principal bundle PSpin(n)(E) and a bundle map
PSpin(n)(E)! PSO(n)(E) that restricts on each fibre to the double covering projection.
We show that E admits a trivialisation over the 2-skeleton of M and therefore that
w2(M) = 0. For that, we define a section τ̃ of PSpin(n)(E) on the 2-skeleton of M
and project it to a section τ of PSO(n)(E). The projected section τ is equivalent to a
trivialisation of E ! M over the 2-skeleton, since it is equivalent to a global oriented
orthonormal frame of such bundle.

The construction of τ̃ follows the same cell-by-cell construction that we have presented
while defining the Stiefel-Whitney classes. The only thing noteworthy is that the simple
connectivity of Spin(n) for n ≥ 3 allows the section τ̃ to be extended over the 2-cells of
M , and this proves what we wanted.

Let us now reduce to the case in which the bundle E !M is the tangent bundle. In
particular we suppose M to be oriented and endowed with a fixed riemannian metric.

A spin structure on M induces, via the spin representation ∆C : Spin(n) ! SC,
an associated complex bundle, called spinor bundle and denoted by S ! M . If the
dimension of M is 2m+ 1 this is a rank-2m complex bundle, whereas if M has dimension
2m it decomposes as a direct sum of two bundles SC = S+

C ⊕ S
−
C of complex dimension

2m−1, corresponding to the decomposition of ∆C into ∆±C . We call these bundles the
positive and negative spinor bundles and we denote them S± !M .

Also notice that the Spin(n) representation ∆C does not descend to SO(n) and
therefore the existence of a spin structure truly increases the toolkit available to study
the topological and geometrical aspects of our manifold.

Remark 1.4.3. Since Spin(n), and therefore Pin(n), is compact the spinor bundle carries
a hermitian inner product that is invariant under the action of Pin(n). This means that
unit vectors of Rn ⊂ Cl(Rn) act as isometries of SC(Rn).

Notice that in any case since SO(n) acts on the complex Clifford algebra Cl(Rn)⊗C it
is always possible, even without the need of a spin structure, to define an associated bundle
of complex Clifford algebras Cl⊗C!M , that decomposes as Cl⊗C = Cl0⊗C⊕Cl1⊗C.
Also notice that since the element ωC is invariant under the action of SO(n) it follows
that ωC defines a section of square 1 of the bundle Cl ⊗ C producing the decomposition

Cl ⊗ C = (Cl ⊗ C)+ ⊕ (Cl ⊗ C)−.
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The presence of a spin structure allows this Clifford bundle to act on the complex
spinor bundle, in the following way:

• Proposition 1.3.7 implies immediately that the bundle Cl ⊗ C is also the bundle
associated to the conjugation action of Spin(n) on Cl(Rn)⊗ C;

• clearly on each trivialising neighbourhood of these bundles we have an action

(Cl(Rn)⊗ C)× SC ! SC

(λ, σ) 7! λ · σ

defined by the Clifford representation. The only thing we need in order to globalise
it is this action to commute with the action of Spin(n) on the two spaces involved.
In other words we need the equality (αλα−1) · (σ) = α · (λσ) for all α ∈ Spin(n),
which obviously holds.

Analogously we can give the definition of spinC structure.

Definition 1.4.4. Let E ! M be an oriented rank-n vector bundle endowed with a
riemannian metric. A spinC structure on E ! M is the choice of a reduction of the
structure group from SO(n) to SpinC(n) where the map SpinC(n)! SO(n) is given by
dividing out by the center.

We say that an orientable riemannian manifold M admits a spinC structure if its
tangent bundle admits a spinC structure.

Proposition 1.4.5. A manifold M admits a spinC structure if and only if there is a
complex line bundle L over M such that TM ⊕ L admits a spin structure.

Proof. By definition M admits a spinC structure if and only if we succeed to find a gluing
cocycle {g̃αβ} lifting the cocycle gαβ

SpinC(n)

��
SO(n)×U(1)

π1
��

Uαβ

g̃αβ

<<

gαβ // SO(n)

where π1 denotes the projection onto the first factor.
Since the diagram

SpinC(n)

��

// Spin(n+ 2)

��
SO(n)×U(1) // SO(n+ 2)
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is a pullback diagram, our goal is equivalent to find a cocycle λαβ : Uαβ ! U(1) such
that the maps

Uαβ
gαβ×λαβ
−−−−−−! SO(n)×U(1)! SO(n+ 2)

can be lifted to a Spin(n + 2)-cocycle, and this happens exactly when there exists a
complex line bundle L such that TM ⊕ L admits a spin structure.

This proposition has an important corollary, that will have important consequences
in what will follow. We first state the following classic result whose proof can be found
in [8]. Recall that the set of complex line bundles over M is a group with the tensor
product.

Theorem 1.4.6. The map{
Complex line bundles

over M up to isomorphism

}
c1−! H2(M ;Z)

is an isomorphism of groups.

Corollary 1.4.7. An orientable manifold M admits a spinC structure if and only if the
second Stiefel-Whitney class w2(M) is the mod 2 reduction of an integral class.

Proof. Thanks to propositions 1.4.2 and 1.4.5 it is enough to show that there exists a
complex line bundle L such that w2(TM ⊕ L) = 0 if and only if w2(M) can be lifted to
an integral cohomology class.

If such a bundle exists the properties of the Stiefel-Whitney classes imply

w2(TM ⊕ L) = w2(M) + w2(L) + w1(M) ^ w1(L).

Both these bundles are orientable, so we have that w2(M) + w2(L) = 0. Since these are
mod 2 classes we get w2(M) = w2(L) and w2(L) has an integral lift, that is the Chern
class of the line bundle.

On the other side, if w2(M) lifts to an integral class α ∈ H2(M ;Z) we can consider
the complex line bundle with first Chern class equal to α and then we are done.

We have seen in Proposition 1.4.5 that to any spinC structure σ is associated a
complex line bundle L!M , obtained by projecting the gluing cocycle of σ onto U(1)
via the map

SpinC ! U(1)
[(x, z)] 7! z2.

We will call this line bundle the determinant line bundle of the spinC structure and
denote it by det(σ). The proof of the previous corollary shows that c1(det(σ)) agrees
modulo 2 with w2(M).

We will also call c1(det(σ)) the Chern class of the spinC structure, and denote it by
c1(σ).



CHAPTER 1. SEIBERG-WITTEN INVARIANTS 21

Remark 1.4.8. What has been said about the construction of the spinor bundles
associated to a spin structure can be repeated unaltered in case of spinC structures.

Notice that there is an action of the group of complex line bundles over M up to
isomorphism on the set of spinC structures on M . More precisely, if σ is a spinC structure
given by the cocycle4

[hαβ, zαβ] : Uαβ ! Spin(n)×U(1)/ ∼

and L is given by the cocycle
λαβ : Uαβ ! U(1)

we can define σ ⊗ L as the spinC structure with cocycle [hαβ, zαβλαβ]. In particular we
have that the gluing cocycle for det(σ ⊗ L) is

(zαβλαβ)2 : Uαβ ! U(1).

This implies that det(σ ⊗ L) = det(σ)⊗ L2 and that c1(σ ⊗ L) = c1(σ) + 2c1(L).

Proposition 1.4.9. The above action is free and transitive.

Proof. Consider two spinC structures σ1 and σ2 with cocycle [h(i)
αβ, z

(i)
αβ ] for i = 1, 2. Since

π(h(1)
αβ) = π(h(2)

αβ) = gαβ

where π : Spin(n)! SO(n) is the double covering and {gαβ} is the SO(n) cocycle defining
the tangent bundle, we can assume (possibly after modifying the maps h(2)

αβ and z(2)
αβ by a

sign) that
h

(1)
αβ = h

(2)
αβ .

This implies that λαβ = z
(2)
αβ/z

(1)
αβ is a U(1)-cocycle. The complex line bundle L defined

by this cocycle obviously satisfies σ2 = σ1 ⊗ L. Hence the transitivity is proved. For the
proof of the freeness we refer to [5].

Thanks to Theorem 1.4.6 it follows from the previous proposition that the set of the
spinC structures on M is in bijection with H2(M ;Z).

At last we want to briefly introduce the Dirac operator associated to a spin or spinC

structure before focusing our attention on the world of four-manifolds.
The Dirac operator is a very important differential operator and a lot of theory has

been developed about it, even if we will only use it as a part of the equations defining
the Seiberg-Witten invariants.

4we can always suppose the cocycle to have this form since Uαβ can be chosen to be contractible.
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If M is endowed with a spin or spinC structure we can lift the Levi Civita connection
ofM to Spin(n) by lifting the local so(n)-valued 1-forms via the differential at the identity
of the covering map Spin(n) ! SO(n). In the case of a spinC structure we also need
to fix a U(1) connection A on the determinant line bundle. In this way we obtain a
Spin(n) (respectively SpinC(n)) connection on the spinor bundle SC that we denote ∇̃
(respectively ∇̃A).

Definition 1.4.10. The Dirac operator is the map

DA : Γ(SC)! Γ(SC)

defined by

DA(s)(x) =
n∑
i=1

ei · ∇̃Aei(s)(x)

where {e1, . . . , en} is an oriented orthonormal frame for TMx. In the case of a spin
structure there is no connection A and we denote the Dirac operator by D.

It is easy to verify that the definition of the Dirac operator does not depend on the
choice of the positive orthonormal frame {e1, . . . , en}. Also notice that in virtue of the
discussion following Theorem 1.3.8 if n is even then the Dirac operator maps Γ(S±C ) into
Γ(S∓C ).

1.4.1 The four-dimensional case

Unfortunately not every manifold admits a spin structure. The simplest example of non
spinnable manifold is CP2. Moreover in [14] it is proved that in any dimension n ≥ 4
there exist compact hyperbolic manifolds that do not admit any spin structure. Anyway
in this dissertation we are interested in four-manifolds, and we are going to show that a
lot of the work done until now will still be useful.

For this reason we now fix the dimension of our manifolds equal to 4.
Recall that if M is an oriented four-manifold one can define the intersection form as

the symmetric bilinear form

QM : H2(M ;Z)×H2(M ;Z)! Z

obtained by setting QM (a, b) =< a ^ b, [M ] >, where [M ] denotes the fundamental class
of M .

If M is closed, in virtue of the Poincaré Duality, we have that QM is unimodular5.
Also, this bilinear form can be thought as a bilinear form on H2(M,Z) and has a strong
geometric interpretation, described as follows:

• we represent the two classes α, β ∈ H2(M,Z) with two oriented closed surfaces
S1, S2 embedded in M ;

5after having modded out the torsion of H2(M ;Z).
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• we suppose that S1 and S2 intersect each other transversely; this is always possible
up to isotopy;

• we count the number of intersections with signs.

The importance of the intersection form QM in the study of the four-manifold M can
hardly be overstated. For instance the following theorem, that can be found in [18], is a
famous result by Freedman.

Theorem 1.4.11. Two simply connected closed smooth four-manifolds are homeomorphic
if and only if they have isomorphic intersection forms.

We recall the following algebraic invariants that can be associated to the intersection
form of M :

• the rank of QM . It is the rank of the torsion-free part of H2(M ;Z). It coincides by
definition with the second Betti number b2(M).

• the signature of QM . It is simply the signature of QM when considered as a
R-bilinear form. We denote it with sign(M). By definition

sign(M) = dim H2
+(M ;R)− dim H2

−(M ;R)

where H2
± are any maximal positive/negative definite subspace for QM . We also

denote their dimensions by b±2 .

• the parity of QM . We say that QM is even if for all classes α we have that QM (α, α)
is even. We say that QM is odd otherwise.

Our aim is to show that if M is a closed orientable four-manifold then M admits a
spinC structure. We premise the following definition.

Definition 1.4.12. An element α ∈ H2(M ;Z) is called a characteristic element if the
equality

QM (α, β) ≡ QM (β, β) (mod 2)

holds for every β ∈ H2(M ;Z).

Since M is closed and oriented we can alternatively consider the intersection form on
H2(M,Z) and define the characteristic elements as elements in H2(M,Z). We will use
both interpretations according to the convenience.

Lemma 1.4.13. There always exist characteristic elements.

Proof. We consider H2(M ;Z) modulo its torsion and denote it by Z. Hence we have a
symmetric unimodular bilinear form Q : Z × Z ! Z. We consider its mod 2 reduction

Q′ : Z ′ × Z ′ ! Z/2Z
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where Z ′ = Z/2Z and Q′ = Q (mod 2).
The form Q′ is a Z/2Z-symmetric unimodular bilinear form and therefore for every Z/2Z-
linear map f : Z ′ ! Z/2Z there exists an element xf ∈ Z ′ such that f(y) = Q′(xf , y).

The map Z ′ ! Z/2Z defined by x 7! Q′(x, x) is Z/2Z-linear since

Q(a+ b, a+ b) ≡ Q(a, a) +Q(b, b) + 2Q(a, b) ≡ Q(a, a) +Q(b, b)(mod 2)

and hence there exists w′ ∈ Z ′ such that Q′(w′, x′) = Q′(x′, x′). Any representative in Z
of the class w′ is a characteristic element.

Theorem 1.4.14. Let M be an orientable closed four-manifold. Then M admits a spinC

structure.

Proof. We have to find an integral class in H2(M ;Z) that is a lifting of w2(M). Consider
the long exact sequence of universal coefficient theorems induced by the projection
p : Z! Z/2Z

0 // Ext(H1(M,Z),Z) //

Ext(p)
��

H2(M ;Z) //

p

��

Hom(H2(M,Z),Z) //

Hom(p)
��

0

0 // Ext(H1(M,Z),Z/2Z) // H2(M ;Z/2Z) // Hom(H2(M,Z),Z/2Z) // 0

and note that the map Ext(p) is surjective since Ext2(H1(M,Z),Z) = 0. If we show that
the element w ∈ Hom(H2(M,Z),Z/2Z) defined by the pairing

w(x) =< w2(M), x >∈ Z/2Z

is in the image of Hom(p) then our aim is obtained by a simple exercise of diagram
chasing.

It is possible to represent the action of w with the intersection form. In fact, for a
given x ∈ H2(M ;Z) consider a closed orientable surface i : S ↪!M such that i∗[S] = x.
Then

w(x) =< w2(TM), i∗[S] >=< w2(TS ⊕NS/M ), [S] >=
=< w2(NS/M ), [S] >= QM (S, S) (mod 2)

where NS/M denotes the normal bundle of S in M .
We have used that both TS and NS/M are oriented and that w2(TS) coincides with

the mod 2 reduction of the euler characteristic of S, which is even.
Moreover w2(NS/M ) is the mod 2 reduction of the Euler class of e(NS/M ). The

number < e(NS/M ), [S] > is well-known to be computed by picking any section s of
NS/M , in general position to the zero-section, and then counting the zeroes of s, and
this is the same as counting QM (S, S). We therefore have that if α ∈ H2(M ;Z) is any
characteristic element then Hom(p)(QM (α, ·)) = w.

Notice that as a corollary of the proof of the above theorem we get the following.

Corollary 1.4.15. If M is spin then QM is even. The converse holds if H1(M,Z) has
no 2-torsion.
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1.5 The Seiberg-Witten invariants
Recall that if V is a four dimensional oriented vector space with inner product <,> the
Hodge star operator restricts to an isomorphism

∗ : Λ2(V )! Λ2(V )

of square 1, producing a decomposition Λ2(V ) = Λ2
+(V )⊕ Λ2

−(V ).

Lemma 1.5.1. Under the natural vector space isomorphism Cl(V )⊗C ∼= Λ∗(V )⊗C the
subspace corrisponding to (Cl0(V )⊗ C)+ is C(1+ωC

2 )⊕ (Λ2
+(V )⊗ C).

Proof. It is clear that Cl0(V ) corresponds to Λ0(V )⊕ Λ2(V )⊕ Λ4(V ) and that multipli-
cation by ωC switches Λ0(V )⊗ C and Λ4(V )⊗ C while leaving Λ2(V )⊗ C invariant.

If {e1, . . . , e4} is an oriented orthonormal basis for V , by direct computation one
shows that ωC∣∣Λ2(V )

coincides with ∗∣∣Λ2(V )
and the lemma follows.

If M is a closed orientable riemannian four-manifold the Hodge star can be extended
to the dual of the tangent bundle, and it produces an analogous decomposition

Ω2(M) = Ω2
+(M)⊕ Ω2

−(M)

of the space of the 2-forms into self-dual and anti self-dual 2-forms.
Let us also suppose M to be endowed with a spinC structure σ. Denote by Connσ

the space of U(1)-connection on det(σ). We define the configuration space

Cσ = Connσ × Γ(S+).

We are now ready to write the Seiberg-Witten equations.

Definition 1.5.2. Fix a closed real 2-form η ∈ Ω2(M). Then a (σ, η)-monopole is a
configuration C = (A,ψ) satisfying the Seiberg-Witten equations

SWσ,η(C) =
{
DAψ = 0
F+
A + iη+ = q(ψ) = 1

2(ψ̄ ⊗ ψ − |ψ|
2

2 Id).

The closed 2-form η is called perturbation parameter.

Let us make some comments on the second equation. The superscript "+" denotes
the self-dual part of a 2-form. Recall that we have the following natural identifications:

Λ2
+(T ∗M)⊗ C = Λ2

+(TM)⊗ C = (Cl0 ⊗ C)+.

We are then identifying the left-hand side of the second equation with its image in
Γ(EndC(S+)) via the Clifford multiplication.
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The right-hand side has the following description. Since S+ has a hermitian metric,
we can identify this complex vector bundle with its dual via an anti-complex isomorphism.
We denote the image of ψ under this isomorphism by ψ̄. Thus ψ ⊗ ψ̄ is an element of

Γ(S+)⊗ Γ((S+)∗) = Γ(EndC(S+))

whose action on any φ ∈ Γ(S+) is defined by φ 7!< φ,ψ > ψ.
Therefore for the second equation to be well-defined we have to show q(ψ) belongs to

the image of Λ2
+(T ∗M)⊗ iR under the previous identifications. This is the content of

the following lemma, whose proof can be found in [4].

Lemma 1.5.3. Under the above identifications q(ψ) is a purely immaginary self-dual
form.

Also notice that the Seiberg-Witten equations depend on the metric in several
ways: the connection ∇A depends on the Levi Civita connection and the splitting
Ω2(M) = Ω2

+(M)⊕ Ω2
−(M) is also dependent on the metric.

It needs a lot of effort to obtain invariants of M from these equations. We limit
ourselves to describe some results that represent few of the several dots to connect in
order to define them. We refer to [3], [4] and [5] for details.

We denote by Zσ = Zσ(g, η) the set of the solutions of the Seiberg-Witten equations.
The so called gauge group, i.e. the group automorphism of the determinant line bundle

Gσ = {f : M ! U(1)}

acts on the configuration space, and preserves Zσ. We define the Seiberg-Witten moduli
space

Mσ =Mσ(g, η) = Zσ/Gσ.

Notice thatMσ sits inside an ambient space that is Bσ = Cσ/Gσ. The goal is to obtain
numerical invariants of M by evaluating cohomology classes onMσ. Unfortunately in
generalMσ is not a manifold. There is at least one6 clear reason forMσ to not be a
manifold: the action of Gσ on Zσ needs not to be free.

In fact the following are the two only possibilities for a fixed configuration C ∈ Cσ:

• Stab(C) = {1};

• Stab(C) is isomorphic to the subgroup U(1) ∈ Gσ consisting of the constant maps,
and in such a case C is said to be reducible.

Hence we need at least the space of solutions Zσ to be contained in the set of the
irreducible configurations Cσ,irr.

It is possible to show that by letting the perturbation parameter vary we can arrange
the equations in such a way that the moduli space becomes a manifold, as the following
theorem states.

6and indeed it is not the only one.
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Theorem 1.5.4. If b+2 (M) ≥ 1 then for a generic perturbation parameter η the moduli
spaceMσ is either empty or a smooth compact orientable manifold of dimension

d(σ) = 1
4

(
c1(σ)2 − (2χ(M) + 3 sign(M))

)
.

There is a procedure to canonically orientMσ according to what is called a homology
orientation on M . A homology orientation on M is the choice of an orientation on
H0(M ;R), H1(M ;R) and H2

+(M ;R). Since we needMσ to be oriented we also suppose
that M is equipped with an homology orientation.

We now know that for a generic η the moduli space Mσ is contained in Bσ,irr =
Cσ,irr/Gσ. The space Bσ,irr is equipped with a U(1)-bundle called the universal line
bundle, whose first Chern class determines a non trivial element µ ∈ H2(Bσ,irr;Z). The
cohomology ring of Bσ,irr is well known.

Theorem 1.5.5. There exists an isomorphism of Z-graded commutative rings with 1

H∗(Bσ,irr;Z) ∼= Z[u]⊗ Λ∗(H1(M ;Z))

where deg u := 2.

In fact it can be shown that µ = u and hence that when M is simply connected this
class is the generator of the cohomology ring of Bσ,irr, which in such case is homotopically
equivalent to CP∞.

If the dimension d(σ) ofMσ is even, say 2k, we define the Seiberg-Witten invariant

SW(σ, η, g) =
∫
Mσ

µk

while if d(σ) is odd we define this invariant to be zero.
It can be shown that if b+2 (M) ≥ 2 then the moduli spaces associated to different

pairs of riemannian metrics and perturbation forms are cobordant in Bσ,irr. For this
reason we have

Theorem 1.5.6. If b+2 (M) ≥ 2 then the correspondence

SpinC(M) −! Z
σ 7−! SW(σ) = SW(σ, η, g)

is independent of the metric g and the perturbation η and is a diffeomorphism invariant
of M . More precisely, for every orientation preserving diffeomorphism f we have

SW(σ) = ±SW(f∗σ)

depending on whether f preserves or reverses the homology orientation of M .



Chapter 2

Arithmetic Groups

The aim of this chapter is to give a brief introduction to the theory of arithmetic groups.
This theory has strong applications in the study of hyperbolic manifolds, giving a beautiful
interplay between group theory and geometry.

This topic is very broad and we will limit ourselves to give the basic definitions and
some motivations. We refer to [21] for the general theory and to [24] for a further insight
in the relations with the theory of hyperbolic geometry.

2.1 Our motivational example: hyperbolic manifolds
In this first section we recall the definitions of hyperbolic space and hyperbolic manifolds
and explain how the interest for hyperbolic geometry naturally leads to the interest for
group theory. We refer to [19] and [20] for an exhaustive discussion about these topics.

We consider Rn+1 equipped with the lorentzian scalar product

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1

and denote with In,1 = diag(1, . . . , 1,−1) the matrix associated to it.
We define the hyperboloid model In of the hyperbolic space Hn as the upper half

sheet
{x ∈ Rn+1| 〈x, x〉 = −1, xn+1 > 0}

of the two-sheeted hyperboloid {x ∈ Rn+1| 〈x, x〉 = −1}. It is easy to show that the
lorentzian scalar product induces on In a complete riemannian metric of constant sectional
curvature −1.

In this model we have the following identification:

Isom(Hn) = O+(n, 1)

where O(n, 1) = {M ∈ GL(n + 1,R)| tMIn,1M = In,1} is the orthogonal group of the
lorentzian scalar product and O+(n, 1) denotes the index–2 subgroup of O(n, 1) preserving
the hyperboloid In.

28
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A hyperbolic manifold M is a riemannian manifold locally isometric to the hyperbolic
space Hn. In other words M is hyperbolic if every point p ∈ M admits an open
neighbourhood isometric to some open subset of Hn. The following is a fundamental
result.

Theorem 2.1.1. Every simply connected complete hyperbolic manifold is isometric to
Hn.

Since also the universal cover of a complete hyperbolic manifold is hyperbolic and
complete, we have that any complete hyperbolic manifold is isometric to Hn/Γ, where
Γ < Isom(Hn) acts freely and properly discontinuosly.

We are interested in manifolds that are quotients of the hyperbolic space and so we
will always suppose, unless otherwise stated, that our hyperbolic manifolds are complete.

This observation leads us to shift our attention to the study of particular subgroups
of Isom(Hn). The identification Isom(Hn) = O+(n, 1) allows us to equip the group of
isometries of the hyperbolic space with a Lie group structure and it is not difficult to
show that Γ < Isom(Hn) acts freely and properly discontinuously if and only if Γ is
discrete and torsion-free.

We add one more request for Γ: we require Γ to be of finite covolume in Isom(Hn),
i.e. we require Hn/Γ to have finite volume. This is not a necessary condition, but one of
the main reasons to study finite volume hyperbolic manifolds is the following theorem,
which states roughly that if n ≥ 3 the corrispondence

{
Hyperbolic manifolds

up to isometry

}
!


Torsion-free discrete

subgroups of Isom(Hn)
up to isomorphism


is a bijection when restricted to finite-volume hyperbolic manifolds (and finite covolume
subgroups).

Theorem 2.1.2 (Mostow Rigidity). Suppose M and N are complete finite-volume
hyperbolic manifolds of dimension n ≥ 3. If there exists an isomorphism of fundamental
groups f : π1(M)! π1(N) then it is induced by a unique isometry from M to N .

Motivated by this example, our aim will be to find torsion-free discrete subgroups of
Isom(Hn) such that Hn/Γ is of finite volume.

2.2 Lattices in semisimple Lie groups
We now introduce the algebraic setting where we work. The theory we present now is
slightly more general than the one we really need, but this will be useful to put things in
the right context.

For the sake of fluency, most of the definitions and the basic results concerning the
theory of Lie groups and Lie algebras are presented in Appendix A.1. We only recall
here the definition of commensurability.
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Definition 2.2.1. Two subgroups Λ1 and Λ2 of a Lie group G are said to be commensu-
rable if the intersection Λ1 ∩ Λ2 has finite index in both Λ1 and Λ2.

We start by stating our working conventions for this chapter.

Working conventions. Throughout this chapter:

• all the Lie groups will be closed subgroups of SL(n,R);

• we will admit disconnected Lie groups, with finitely many connected compo-
nents;

• G will denote a semisimple Lie group.

If G is a non-connected Lie group, we will denote with G◦ the connected component
of the identity. Notice that G◦ is a normal subgroup of finite index in G.
Theorem 2.2.2. If H is any Lie group, then there is a unique (up to a scalar multiple)
σ-finite Borel measure µ on H such that:

• µ(C) is finite for every compact subset C of H.

• µ(hA) = µ(A) for every Borel subset A of H and every h ∈ H.
The measure µ of Theorem 2.2.2 is called left Haar measure. Analogously there is a

unique right Haar measure with µ(A) = µ(Ah).
We say that H is unimodular if the left Haar measure and the right Haar measure

coincide (up to a scalar multiple).
Proposition 2.2.3. If G is semisimple then it is unimodular.

This fact is a consequence of the following proposition and of Proposition A.1.15.
Proposition 2.2.4. There is a continuous homomorphism ∆ : H ! R+ such that if µ
is any (left or right) Haar measure on H then

µ(hAh−1) = ∆(h)µ(A)

for all h ∈ H and for any Borel set A ⊂ H.
Proof. Suppose that µ is a left Haar measure. Fix h ∈ H and consider the isomorphism

ϕh : H ! H

x 7! hxh−1.

The push-forward (ϕh)∗µ of µ via ϕh is a left Haar measure on H and hence by uniqueness
there exists a positive constant ∆(h) ∈ R+ such that

µ(hAh−1) = (ϕh)∗µ(A) = ∆(h)µ(A).

The map ∆ : H ! R+ is clearly a homomorphism. The continuity of ∆ follows from the
outer regularity of the Haar measure.
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Example 2.2.5. The orthogonal groups O(p, q) are all semisimple when p+ q ≥ 3.

If Γ is a discrete subgroup of G it is possible to define on G/Γ a measure that is
compatible with the Haar measure of G. This is due to the existence of strict fundamental
domains.

Lemma 2.2.6. If Γ is a discrete subgroup of G, then there is a strict fundamental
domain for G/Γ in G. That is, there is a Borel subset F of G such that the natural map
F ! G/Γ, defined by g 7! gΓ, is bijective.

Proof. Since Γ is discrete there exists an open set U such that UU−1∩Γ = {e}. Moreover,
since G is second countable we can also find a sequence (gn)n∈N of elements in G such
that ⋃

n∈N
gnU = G.

We now define F as
F =

⋃
n∈N
Fn =

⋃
n∈N

(
gnU \

⋃
i<n

giUΓ
)
.

It is obvious from the definition that F is a Borel subset of G. We prove that the
projection restricted to F is a bijection:

• suppose that there exist f and f ′ ∈ F that belong to the same coset of Γ in G.
Without loss of generality we can suppose that f belongs to Fj and f ′ belongs to
Fi, for i ≤ j. If i = j then both f = f ′γ and f ′ are elements in giU and we have

giu = f = f ′γ = giu
′γ

and since UU−1 ∩ Γ = {e} we deduce that f = f ′.
If i < j then f does not belong to the set giUΓ; but f ′ is an element of giU and
f = f ′γ gives a contradiction. This proves the injectivity.

• in order to prove the surjectivity we have to show that FΓ = G. If g is an element
of G we know that there exist an index n and an element u ∈ U such that g = gnu.
We have two cases now: if g /∈ ⋃i<n giUΓ then we deduce that g belongs to Fn and
we are done; otherwise we have that g = giu

′γ for some i < n, some u′ ∈ U and
some γ ∈ Γ, but then we can apply the same argument to giu′ and conclude by
iteration.

Remark 2.2.7. It is possible to improve Lemma 2.2.6. In fact it is possible to find a
strict fundamental domain F such that

• µ(∂F) = 0.

• for every compact set K ⊂ G the set {γ ∈ Γ | γF ∩K} is finite.1
1See [28] at page 35.
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Proposition 2.2.8. Let Γ be a discrete subgroup of G and let µ be a Haar measure on
G. Then there exists a unique (up to a scalar multiplication) σ-finite G-invariant Borel
measure ν on G/Γ.

More precisely, for any strict fundamental domain F and any A ⊂ G Borel set such
that AΓ = A such a measure ν can be defined as

ν(AΓ) = µ(A ∩ F).

We will always assume the measure ν normalized so that the previous equality holds.

Definition 2.2.9. A subgroup Γ of G is a lattice in G if it is discrete and G/Γ has finite
volume.

Let us return to our motivational example, where G = Isom(Hn).
We have already noticed that a subgroup of G acts properly discontinuosly on Hn if

and only if it is discrete. We now briefly explain how the volume of G/Γ is linked to the
volume of Hn/Γ.

Proposition 2.2.10. Let Γ be a discrete torsion-free subgroup of Isom(Hn). Then G/Γ
has finite volume if and only if Hn/Γ has finite volume.

Proof. We only give a sketch of the proof.

• Step 1. We can define a Haar measure for G = Isom(Hn) in the following way:
we fix a point x ∈ Hn and we define for each Borel set S ⊂ Isom(Hn)

µG(S) = µHn(S(x))

where S(x) = ⋃
ϕ∈S ϕ(x).

• Step 2. The measure on Hn/Γ is defined in the following way: we consider the
unique Borel measure on Hn/Γ induced by assigning to every well-covered open set
U ⊂ Hn/Γ a measure equal to µHn(Ui) for some i, where π−1(U) = ⊔

i∈I Ui.
In particular for every open set A ∈ Hn such that π∣∣A is injective it holds

µHn(A) = µHn/Γ(π(A)).

• Step 3. If F is a strict fundamental domain as the one in Remark 2.2.7 we have
that

◦
F(x) is an open set in Hn on which π is injective and whose image has the

same volume of Hn/Γ.
So we have the following equalities:

ν(G/Γ) = µG(
◦
F) = µHn(

◦
F(x)) = Vol(Hn/Γ).
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Thus lattices are exactly the objects we are looking for. Notice that achieving torsion
freeness is not a real problem thanks to the two following results, whose proofs can be
found in [21] and [29] respectively.

Theorem 2.2.11. Let Γ be a lattice in a semisimple Lie group G. Then Γ is finitely
presented.

Theorem 2.2.12 (Selberg’s lemma). Let H be a finitely generated subgroup of GL(n,C).
Then there is a finite-index normal subgroup K �H without torsion.

We now define what is an arithmetic subgroup. We start from the following observa-
tion, whose proof can be found in [21].

Proposition 2.2.13. SL(2,Z) is a lattice in SL(2,R).

We simply want to generalise this example, and hope that taking the integer points
of a semisimple Lie group G ⊂ SL(n,R) will yield to us a lattice in G.

We denote with GZ the intersection G ∩ SL(n,Z).
In general GZ is not a lattice. In order for GZ to form a lattice, we need G to be

well-placed with respect to SL(n,Z). In fact, in some cases it is possible to conjugate G
in such a way that its intersection with SL(n,Z) becomes trivial (see exercise 1 in §5.1 of
[21]).

Definition 2.2.14. Let H be a closed subgroup of SL(n,R). We say that H is defined
over Q if there is a subset Q of Q[x1,1, . . . , xn,n] such that

• Var(Q) = {g ∈ SL(n,R) |Q(g) = 0 ∀Q ∈ Q} is a subgroup of SL(n,R).

• H◦ = Var(Q)◦.

Remark 2.2.15. It can be shown that every set in SL(n,R) of the form Var(Q) has
only finitely many connected components. Since by our working conventions H has only
finitely many components too, we are equivalently saying that H is defined over Q if it is
commensurable to the variety Var(Q), for some set Q of Q-polynomials.

Being defined over Q is the condition we need in order to make the construction work.

Theorem 2.2.16 (Borel–Harish-Chandra). If G is defined over Q, then GZ is a lattice
in G.

It can be shown that G is always isogenous to a group defined over Q and hence we
have:

Theorem 2.2.17. If G is a semisimple Lie group, then G contains a lattice.

A lattice of the form GZ is said to be arithmetic. Nonetheless the definition of
arithmetic lattice is slightly more general, in order to include some reasonable operations
that will allow us to call arithmetic a wider class of lattices.
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Definition 2.2.18. Let Γ be a lattice in G. We say that Γ is an arithmetic lattice of G
if and only if there exist:

• a connected, semisimple Lie group G′ defined over Q;

• an isomorphism ϕ : G◦/K ! G′/K ′, where K and K ′ are compact normal sub-
groups G◦ and G′ respectively;

such that ϕ(Γ̄) is commensurable to Ḡ′Z, where Γ̄ and Ḡ′Z denote the images of Γ ∩G◦
and G′Z in G◦/K and G′/K ′.

2.3 Arithmetic lattices in orthogonal groups
We now want to show some ways to construct arithmetic lattices in the orthogonal groups.

We recall that if U is a subring of R, GL(n,U) denotes the subgroup of GL(n,R)
that consists of the matrices whose coefficients belong to U and whose determinant is a
unit in U .

We denote by Ip,q the diagonal matrix in Mat(p+ q,R)

Ip,q = diag(1, 1, . . . , 1,−1,−1, . . . ,−1)

where the number of 1’s is p and the number of −1’s is q.
Recall that the group

O(p, q) = {M ∈ GL(p+ q,R) | tMIp,qM = Ip,q}

is always semisimple if p+ q ≥ 3.
In order to continue to work with semisimple groups we therefore suppose p+ q ≥ 3,

even if some of the results we are going to present can be easily adapted when p+ q < 3.

Definition 2.3.1. A lattice in Rn is an additive subgroup L isomorphic to Zn.

Observation 2.3.2. The definition of lattice in Rn coincides with the definition given
for semisimple groups. In fact it is not difficult to show that any discrete subgroup of
Rn is isomorphic to Zk for some 0 ≤ k ≤ n. If we require this subgroup to be of finite
covolume, then k must be equal to n.

We denote by R the set of lattices in Rn and by L0 the lattice Zn. The group GL(n,R)
acts transitively on R and this action provides us an identification

GL(n,R)
GL(n,Z)

∼
! R

[g] 7! [g] · L0.

We topologise the set R with the quotient topology.
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In particular, a sequence (Lm)m∈N in R converges to L if and only if there exist bases
(fm1 , . . . , fmn ) of Lm and a basis (f1, . . . , fn) of L such that

(fm1 , . . . , fmn ) −!
m!∞

(f1, . . . , fn).

For every L ∈ R we denote by Vol(L) the volume of Rn/L and by s(L) the systole of
L, which is defined as the infimum of the lenghts of vectors in L \ {0}.

Observation 2.3.3. Since L is closed and discrete, the systole is always achieved by
some vector in L \ {0}.

We state the following important compactness criterion for subsets of R. A proof
can be found in [21].

Proposition 2.3.4 (Mahler Compactness Criterion). A subset M ⊂ R is relatively
compact if and only if there exist ε > 0 and C > 0 such that s(L) ≥ ε and Vol(L) ≤ C
for all L ∈M .

We are now ready to introduce a large class of arithmetic lattices in O(p, q). Recall
that if k ⊃ Q is a finite field extension of degree d then there exist exactly d different
embeddings

σi : k ↪! C

that restrict to the identity on Q. We will suppose to have fixed one of these embeddings,
to which we will refer as the identity embedding.

We say that k is a totally real number field if k is a finite extension of Q such that
all the embeddings σi have image in R and we denote the ring of integers of k by Ok.
Recall that the ring of integers of k is the ring of the elements of k that are roots of
monic polynomials with integer coefficients.

Let k be a totally real number field and let (kn, Q) be a quadratic space over k of
dimension n. If we denote by ki the fields σi(k) ⊂ R we can extend the map σi : k ! ki
to a map from kn to kni , that we still denote by σi, in the following way

σi : kn −! kni

(α1, . . . , αn) 7−! (σi(α1), . . . , σi(αn))

and we can define d − 1 more quadratic spaces (kni ,σi Q), where σiQ is obtained by
applying σi to the entries of Q.

Notice that by definition it holds

σiQ(σi(v)) = σi(Q(v)) ∀v ∈ kn.

These quadratic forms induce in the obvious way quadratic forms on Rn, that we will
still denote by σiQ. We also define the groups

O(σiQ) = {M ∈ GL(n,R)| tM σiQM = σiQ}.
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In this setting, we say that Q does not represent zero over k if the only vector v with
coefficients in Ok such that Q(v) = 0 is the zero vector.

We now state the main result. Recall that a lattice Γ in G is cocompact (or uniform)
if G/Γ is compact.

Theorem 2.3.5. Suppose Q ⊂ k is a totally real field extension of degree d, with
embeddings σi : k ↪! R and ring of integers Ok. Let (kn, Q) be a quadratic space of
dimension n over k such that:

• the form Q has signature (p, q);

• the form σiQ is definite, for i = 2, . . . , d.

Let G denote the group O(Q) and Γ denote the intersection G ∩GL(n,Ok). Then Γ is
an arithmetic lattice in G. Moreover, Γ is cocompact if and only if Q does not represent
zero over k.

If Q is a quadratic form that satisfies the hypotheses of the previous theorem we say
that Q is admissible.

We divide the proof of the theorem in two cases.
Case k = Q.
In virtue of Theorem 2.2.16 we already know that Γ is a lattice in O(Q). So in this

case we only have to prove that Γ is cocompact if and only if Q does not represent zero.
Notice that G/Γ can be identified with a subset of R via the map

G/Γ ↪! R
g 7! g · L0

The theorem will be a consequence of the two following lemmas and of the Mahler
compactness criterion2.

Lemma 2.3.6. The inclusion G/Γ ↪! R is a homeomorphism with the image, and G/Γ
is closed as a subset of R.

Proof. We can suppose, up to scalar multiplication, that Q(Zn) ⊂ Z.
We first show that G/Γ is closed. Let (Lm)m∈N ⊂ G · L0 be a sequence in G/Γ such

that Lm ! L, with L ∈ R. Since G preserves Q we have that Q(Lm) ⊂ Z for all m ∈ N
and so the continuity of Q implies that Q(L) ⊂ Z.

In particular, if (fm1 , . . . , fmn ) is a basis of Lm and (f1, . . . , fn) is a basis of L such
that

(fm1 , . . . , fmn ) −!
m!∞

(f1, . . . , fn)

2Notice that the volume of the lattices in G · L0 is clearly limited, since G ⊂ SL(n,R).
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we have that, when m is big enough, the equalities Q(fi) = Q(fmi ) and Q(fi ± fj) =
Q(fmi ± fmj ) hold.

These, by polarization, imply that Q(fi, fj) = Q(fmi , fmj ), and this equality tells us
exactly that L ∈ G · Lm = G · L0, that is what we wanted to prove.

In order to show that the inclusion is a homeomorphism onto its image, we prove
that it is a closed map. Let us suppose that a sequence (Lm)m∈N ⊂ G · L0 converges to
L in R. The conclusion we obtained when we have shown that L belongs to G · L0 can
be reformulated in the following way: if

gnγn ! h where gn ∈ G, γn ∈ GL(n,Z), h ∈ GL(n,R)

then there exist h′ ∈ G and γ ∈ GL(n,Z) such that h = h′γ. What we have to show now
is that under these hypotheses there exists γ̃n ∈ G ∩ GL(n,Z) such that the sequence
gnγ̃n converges, and this is obtained by considering γ̃ = γnγ

−1. In fact, the sequence
gnγ̃n clearly converges, and by applying the same argument we used to show that G/Γ is
closed, one proves that for n big enough γ̃n belongs to G.

Lemma 2.3.7. The systole is uniformly bounded away from 0 on G/Γ if and only if Q
does not represent zero over Q.

Proof. We can suppose Q(Zn) ⊂ Z. Let us also suppose that Q does not represent zero
over Q. We show that there exists a neighbourhood U of 0 in Rn such that U ∩ L = {0}
for all L ∈ G/Γ. This clearly implies that the systole is uniformly bounded away from 0
on G/Γ.

We define U as the set {x ∈ Rn| |Q(x)| < 1}. Since Q(L) ⊂ Z for all L ∈ G/Γ and Q
does not represent zero we have that U ∩ L = {0} for all the lattices in G/Γ.

On the other side we now show that if Q represents zero over Q then it is possible to
find vectors in the lattices of G/Γ of arbitrarily small lenght.

In fact, let v ∈ Zn be a non-zero vector such that Q(v) = 0. It is easy to show that
we can complete v to a basis B = {v, w, . . . } of Rn such that Q is represented in such

basis by the matrix Q′ = diag[H, Ip−1,q−1], where H denotes the matrix
[
0 1
1 0

]
.

If we denote with A the matrix whose columns are the vectors of the basis B, we
have that G′ = O(Q′) coincides with tA−1GA−1 and the lattice L0 becomes the lattice
spanned by B, that is A · L0.

It is easy now to observe that we can arbitrarily shorten the vector v with matrices
in G′, for example with the isomorphism ϕn defined by

v
ϕn!

v

n

w
ϕn! nw

z
ϕn! z ∀z ∈ B \ {v, w}.

In this way we find arbitrarily short vectors in G′ ·A ·L0 = tA−1 ·G ·L0 and by continuity
also in G · L0.
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There is a theorem, called Meyer’s Theorem (see [30]), that asserts that if n = p+q ≥ 5
every indefinite quadratic form over Q represents zero.

Therefore, if n is big enough, there is no hope to obtain cocompact lattices from
quadratic forms defined over Q. We are going to show that instead if k 6= Q all the
lattices obtained in this way are cocompact.

Case k 6= Q
This case is slightly more technical, so we only give the main ideas of the construction.

We mantain the notations of Theorem 2.3.5.
Recall that we want to study Γ = O(Q) ∩GL(n,Ok). Since Ok is now not discrete3 in R
it is not obvious that Γ is discrete in O(Q). However, if we consider the immersion

∆ : k ↪!
d times︷ ︸︸ ︷

R× · · · × R
x 7! (x, σ2(x), . . . , σd(x))

we have that ∆(Ok) is discrete in Rd since ∆(Ok) is bounded away from 0, in virtue of
the following lemma, whose proof is purely algebraic and can be found in [25].

Lemma 2.3.8. The map N : Ok ! R defined by N(x) = ∏d
i=1 σi(x) takes values in Z.

The map ∆ induces the following maps, that we still denote with ∆

∆ : kn !
d times︷ ︸︸ ︷

Rn × · · · × Rn

∆ : O(Q)! O(Q)×O(σ2Q)× · · · ×O(σdQ)

defined by applying ∆ to the entries of the vectors/matrices . In particular, since ∆(Ok)
is discrete, we have that ∆(Γ) is discrete in O(Q)×O(σ2Q)× · · · ×O(σdQ).

This implies that Γ is discrete in O(Q). In fact, being σiQ definite for i ≥ 2, we have
that O(σiQ) is compact, and therefore the projection of ∆(Γ) on the first factor, which
coincides with Γ by definition, is discrete.

Remark 2.3.9. Notice that none of the maps ∆ is continuous.

We fix the following notations:

• N denotes the product nd;

• G denotes the group O(Q);

• G∗ denotes the group O(Q)×O(σ2Q)× · · · ×O(σdQ);

• Γ∗ denotes the group ∆(Γ);
3for instance, the sequence

(
(
√

2− 1)n
)
n∈N
⊂ Z[
√

2] accumulates to zero.
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• if H is a subgroup of GL(N,R) we denote by H∆(On
k

) the subgroup

H∆(On
k

) = {M ∈ H| M(∆(Onk )) ⊂ ∆(Onk )}

of the matrices in H that preserve ∆(Onk ).

Notice that Q does not represent zero over k. This follows from the equality
σi(Q(v)) =σi Q(σi(v)) and from the fact that σi is defined by hypothesis.

Now, in fact, we want to argue that in this case Γ is always cocompact. Since the
projection G∗ ! G descends to a surjective map G∗/Γ∗ ! G/Γ, in order to prove that
G/Γ is compact it is enough to show that G∗/Γ∗ is compact.

Fact 2.3.10. There exists an isomorphism φ : RN ! RN such that φ(∆(kn)) = QN and
φ(∆(Onk )) = ZN . Moreover, under this isomorphism G∗ becomes defined over Q.

Fact 2.3.11. The group Γ∗ coincides with the group G∗∆(On
k

).

As a corollary of these two facts we have that Γ is indeed an arithmetic lattice in
G. In fact Γ∗ is arithmetic since it coincides, under the isomorphism induced by φ, with
the integer points of a group defined over Q, and Γ is obtained from Γ∗ by modding out
compact factors.

To show that G∗/Γ∗ is compact it is enough to adapt Lemma 2.3.6 and Lemma 2.3.7
to the embedding of G∗/Γ∗ into SL(N,R)

SL(N,R)∆(On
k

)
.

In order to prove next lemma, and also later in this dissertation, we need the following
fact, whose proof and can be found in [31].

Fact 2.3.12. The ring of integers Ok is a free Z-module of dimension equal to the degree
of k over Q. In particular, there exists a basis for k over Q whose vectors also define a
Z-basis for Ok.

Lemma 2.3.13. G∗/Γ∗ is precompact in SL(N,R)
SL(N,R)∆(On

k
)
.

Proof. We can mimic Lemma 2.3.7 and show that the systole of the lattices in G∗/Γ∗ is
uniformly bounded away from zero.

Up to scalar multiplication, we can suppose that for all v ∈ Onk the quantity Q(v)
lies in Ok. We also define a continuous map

Q̃ :
d times︷ ︸︸ ︷

Rn × · · · × Rn ! Rd

(v1, . . . , vd) 7! (σiQ(vi)).

Notice that in virtue of the equalities

σi(Q(v)) =σi Q(σi(v)) for 2 ≤ i ≤ d and v ∈ Onk
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the image of ∆(Onk ) via the map Q̃ is contained in ∆(Ok), that is discrete.
We now argue by contradiction: let g∗m be a sequence in G∗ and v∗m be a sequence in

∆(Onk ) \ {0} such that
g∗mv

∗
m −!m!∞

0.

By hypothesis we have that Q̃(g∗mv∗m) = Q̃(v∗m) ∈ ∆(Ok) \ {0} for all m ∈ N, and hence
by discreteness the sequence g∗mv∗m cannot converge to zero.

By mixing the ideas of the proofs of the previous lemma and of Lemma 2.3.6 one
analogously shows that the inclusion of G∗/Γ∗ in SL(N,R)

SL(N,R)∆(On
k

)
is a homeomorphism

onto its image and that G∗/Γ∗ is closed as a subspace, and therefore compact.

We restate what we have shown.

Proposition 2.3.14. In the setting of Theorem 2.3.5, if the degree of the extension
Q ⊂ k is strictly bigger than 1, then the subgroup Γ is a cocompact arithmetic lattice.

Clearly by diagonalizing the form Q over R we obtain by conjugation an arithmetic
lattice in O(p, q). We call of simplest type the subgroups of O(p, q) commensurable to
subgroups obtained by conjugating in this way the lattices of Theorem 2.3.5.

In the case of our interest, where G = Isom(Hn) = O+(n, 1), the result of Proposition
2.3.14 has a partial converse, as it is stated in the following theorem. For a proof we refer
to [21].

Theorem 2.3.15. If G = O(n, 1) and n > 2 is even, then the arithmetic subgroups
of simplest type associated to the lattices of Proposition 2.3.14 are the only cocompact
arithmetic subgroups.



Chapter 3

Embedding arithmetic hyperbolic
manifolds

In this chapter we prove a theorem that has a key role in this dissertation. It has been
proven by Kolpakov, Reid and Slavich in [22] and so we refer to this article for the details
and the technicalities.

We recall some notations that we have already used in the previous chapter. The
symbol k denotes a totally real number field and Ok denotes the ring of integers of k.
We always think of k as equipped with a fixed embedding k ↪! R, to which we refer as
the identity embedding.

If G is a subgroup of GL(n,R) and U is a subring of R, we denote by GU the U -points
of G, that is to say the intersection G ∩GL(n,U).

Also recall that a subgroup of O(p, q) is called arithmetic of simplest type if it is
commensurable to some subgroup obtained by conjugating lattices of the form O(Q) ∩
GL(n,Ok), where Q is an admissible quadratic form of signature (p, q) over k.

For a quadratic form Q over k being admissible of signature (p, q) means that Q has
signature (p, q) at the identity embedding and is definite at all the other embeddings of
k in R.

If M = Hn/Γ is a hyperbolic manifold, we say that M is arithmetic of simplest
type if Γ is an arithmetic lattice of simplest type in Isom(Hn). We also say that M
is defined over k if Γ is obtained from an admissible quadratic form f defined over k.
We denote by Γ(2) the subgroup of Γ generated by the squares of the elements of Γ, i.e.
Γ(2) =< γ2| γ ∈ Γ >.

Before stating the theorem we need to give a definition.

Definition 3.0.1. A submanifold M of a Riemannian manifold (M̃, g̃) is called totally
geodesic if any geodesic on the submanifold M with its induced Riemannian metric g is
also a geodesic on M̃ .

For example, the support of any geodesic in a riemannian manifold is a totally geodesic

41
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submanifold. A more interesting example is the following.

Example 3.0.2. The totally geodesic (complete and connected) m-submanifolds of the
hyperbolic space Hn are precisely the m-planes1. These are clearly totally geodesic, and
conversely if M is a complete totally geodesic submanifold and x is any of its points,
then the tangent space TxM uniquely determines M , since exp(TxM) = M . Therefore
M must coincide with the m-plane tangent to TxM at x.

Notice that the previous example has the following consequence.

Observation 3.0.3. If M = Hm/Γ and M̃ = Hn/Γ̃ are hyperbolic manifolds, then a
proper embedding M ↪! M̃ is totally geodesic if and only if it is induced by an inclusion
of Hm in Hn as a m-plane.

We are now ready to introduce the theorem.

Theorem 3.0.4. Let n ≥ 2 and let M = Hn/Γ be an orientable arithmetic hyperbolic
manifold of simplest type.

• If n is even, then M embeds as a totally geodesic submanifold of an orientable
arithmetic hyperbolic manifold W of dimension n+ 1.

• If n is odd, then the manifold M (2) = Hn/Γ(2) embeds as a totally geodesic subman-
ifold of an orientable arithmetic hyperbolic manifold W of dimension n+ 1.

Moreover, if M is not defined over Q the manifold W can be taken to be closed.

3.1 Step 1. Embeddings of orthogonal groups
We now start the proof of Theorem 3.0.4. Let us say that Γ is obtained from the admissible
form f defined over the field k. In what will follow we will confuse the notation and
denote by Γ both the subgroup of Isom(Hn) and the subgroup of O(f) to it conjugated.
Notice that the definition of arithmetic subgroup of simplest type implies that Γ < O(f)
is commensurable to O(f)Ok .

Since we are working in this restricted setting, in this chapter we will say that such a
Γ is arithmetic in O(f), even if the definition 2.2.18 of arithmetic lattice we have given
in the second chapter is more general.

The proof is divided in the following steps:

• Step 1. There exists an admissible form g defined over k of signature (n+ 1, 1)
such that O(f) (respectively, SO(f)) embeds as a subgroup of O(g) (respectively
SO(g));

• Step 2. If Γ is an arithmetic subgroup of O(f)Ok and is contained in the k-points
of O(f), then there exists a arithmetic lattice Λ contained in the k-points of O(g)
such that Γ ⊂ Λ;

1i.e. the intersection of the hyperboloid In with a linear (m+ 1)-subspace of Rn+1.
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• Step 3. It is possible to find such a Λ torsion-free;

• Step 4. At this point, we obtain an inclusion of Hn in Hn+1 as a n-plane. This
induces an immersion Hn/Γ = M ! W ′ = Hn+1/Λ, and it is possible to arrange
things in order to have M totally geodesically embedded in a finite cover W of W ′.

We reveal in advance that the proof of Step 2 will make clear the distinction between the
cases when n is even and when n is odd.

Proof of Step 1. We first study the case when f is represented by the diagonal quadratic
form a1x

2
1 +a2x

2
2 + · · ·+anx

2
n−bx2

n+1 where b and all the ai’s are positive and square-free
elements of Ok.

In this case it is very easy to construct g. We comment the cases:

• if k 6= Q then we can consider g = y2 + f and both f and g do not define zero
over k. In particular, as a corollary of Theorem 2.3.5 both OOk(f) and OOk(g) are
cocompact lattices;

• if k = Q and n ≥ 3 we define the form g = y2 + f , but in this case as a consequence
of Meyer’s Theorem g does represent zero over Q, and so OOk(g) is an arithmetic
lattice that is not cocompact;

• if k = Q and n = 2 and if f is isotropic then also g = y2 + f is isotropic; if f does
not represent zero over Q then it is possible to find a positive rational q such that
the form g = qy2 + f does not represent zero over Q (see Lemma 10.1 in [22]). So
in this case we get a cocompact arithmetic lattice.

In the general case, it is possible to diagonalize the form f over k and therefore find a
matrix T ∈ GL(n+ 1, k) such that T−1 O(f0)T = O(f), where f0 is an admissible form
of the kind already studied. So we consider the form g0 associated to f0 and if T̃ denotes
the matrix

T̃ =
[

1 0
0 T

]

then T̃−1 O(g0)T̃ = O(g) for some admissible form g and clearly O(f) embeds in O(g).

The geometric interpretation of the construction we have just described is very clear
and is the following: we embed Hn as a n-plane of Hn+1 and for any point p ∈ Hn we
denote with γp the unique geodesic in Hn+1 that intersects Hn orthogonally in p; if ϕ is
an isometry of Hn we extend ϕ by sending γp to the geodesic γϕ(p) for all p ∈ Hn. Since
the set of geodesics of the form γp defines a partition of Hn+1 we obtain a well-defined
extension ϕ̃ ∈ Isom(Hn+1).
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Figure 3.1: How to define the map ϕ̃.

3.2 Step 2. Embeddings of arithmetic lattices
We pass now to Step 2. Recall that the commensurator Comm(Γ) of Γ in G is defined
as the subgroup of the elements g ∈ G such that gΓg−1 is commensurable to Γ. Also
recall from Fact 2.3.12 that Ok is a free Z-module and that there exists a Q-basis of k
composed by vectors in Ok.

We need the following lemma.

Lemma 3.2.1. Let H denote the group O(g), where g is an admissible quadratic form.
Then Hk = H ∩GL(n, k) is contained in the commensurator of HOk = H ∩GL(n,Ok).

Proof. We have to show that for each γ ∈ Hk the subgroup γ−1HOkγ is commensurable
to HOk . In virtue of Fact 2.3.12 there exist two integers p, q ∈ Z and two matrices M,N
with coefficients in Ok such that

γ = 1
p
M and γ−1 = 1

q
N.

Let m denote the product pq and let us consider the finite-index (congruence) subgroup
Jm = ker πm ∩HOk ⊂ HOk , where πm is the homomorphism

GL(n,Ok) −! GL(n,Ok/(m))
A = (ai,j) 7−! Am = ([ai,j ]m).

If A is a matrix in Jm we can write A as Id +mU , where U has coefficients in Ok, and
we have that γAγ−1 = Id +MUN is a matrix in Hk with coefficients in Ok, and hence
belongs to HOk .

We have so proven that γJmγ−1 is contained in HOk and therefore that Jm is
contained in HOk ∩ γ−1HOkγ. This implies that this intersection has finite index in HOk
and analogously one proves that it has finite index also in γ−1HOkγ.
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Proof of Step 2. We simplify the notations: we denote with G the group O(f) and with H
the group O(g). By hypothesis we have that Γ ⊂ Gk is arithmetic, i.e Γ is commensurable
to GOk .

Notice that this implies that Γ′ = Γ ∩HOk has finite index in Γ, since it contains
Γ ∩GOk . We define Λ1 = ⋂

γ∈Γ γHOkγ
−1. Since Γ′ has finite index in Γ we have that Λ1

is actually a finite intersection of Hk-conjugates of HOk . Since this intersection is finite
and Hk commensurates HOk we have that Λ1 is commensurable to HOk . Moreover Λ1 is
normalised by Γ, and hence Λ = ΓΛ1 = Λ1Γ is a well-defined subgroup of Hk. We say
that Λ is arithmetic.

Clearly Λ ∩HOk has finite index in HOk , due to the fact that Λ1 is contained in Λ
and Λ1 is arithmetic. We show that Λ ∩HOk has finite index in Λ as well. Let us denote
with Λ′1 the intersection Λ1 ∩HOk . Since in general Γ′ does not normalise Λ′1, the set
Λ′1Γ′ is not a subgroup, but in any case it is contained in Λ ∩HOk . So it is enough to
show that Λ is the finite union of translates of Λ′1Γ′ and this is a consequence of the
following equalities

ΓΛ1 =
⋃

i∈I finite
γiΓ′Λ1 =

⋃
i∈I finite

γiΛ1Γ′ =
⋃

i∈I finite
j∈J finite

γiλjΛ′1Γ′.

Notice that in order to apply the previous result we need the subgroup Γ to be
contained in the k-points of SO(f). It is a result of Borel (see [32]) that if G is a
centreless linear algebraic group then all the arithmetic lattices are contained in Gk.
Since it can be shown that SO(f) is centreless if n is even, we have no problem in this
case.

If n is odd we cannot suppose that Γ lies in the k-points of SO(f), but in [33] it is
shown that in any case the subgroup Γ(2) does, so we can adapt the results with this
expedient.

3.3 Step 3. Immersions of hyperbolic manifolds
We now address the problem of torsion. In fact a priori Λ can contain elements of finite
order. What we are going to show is that, in virtue of some separability results, we can
find a finite-index torsion-free subgroup Λ′ of Λ such that Γ ⊂ Λ′.

We will need some basic facts about profinite topology and profinite completions. See
Appendix A.2 for some definitions and references.

We shortly introduce some very important concepts about hyperbolic manifolds.
Here we will limit ourselves to state the main theorems, giving for granted some basic
definitions of hyperbolic geometry. We refer to [38] and to the chapter 6 and 12 of [29]
for details.
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Definition 3.3.1. A convex polyhedron P in Hn is said to be geometrically finite if for
each point x of P̄ ∩ ∂Hn there is an open neighborhood of x that meets just the sides of
P incident with x.

Definition 3.3.2. A discrete subgroup Γ of Isom(Hn) is said to be geometrically finite
if Γ has a geometrically finite, exact, convex, fundamental polyhedron.

Clearly all the finite-sided polyhedra are geometrically finite, but there are geometri-
cally finite polyhedra that have infinitely many sides, such as the following.

Example 3.3.3. Let Q be a convex polyhedron with infinitely many sides in the euclidean
space Rn−1 and let π : Hn ! Rn−1 be the vertical projection, where Hn denotes the
half-space model of the hyperbolic space. The vertical prism P = π−1(Q) is a convex
polyhedron in Hn with an infinite set of sides

{π−1(S) |S is a side of Q}

and P is geometrically finite.

Theorem 3.3.4. If Γ < Isom(Hn) is a lattice, then Γ is geometrically finite. Moreover
every exact, convex, fundamental polyhedron P for Γ is finite-sided.

It is not difficult to show that every discrete subgroup of Isom(Hn) admits a exact,
convex, fundamental polyhedron. For example, any Dirichlet domain for Γ satisfies these
properties.

As a corollary of the previous theorem we have that all the arithmetic lattices in
Isom(Hn) are geometrically finite. Since we are interested in separating Γ from the
torsion elements of Λ, we give the following definition.

Definition 3.3.5. Let Γ be a finitely generated, discrete subgroup of O+(n, 1). We say
that Γ is geometrically finite extended residually finite (or GFERF) if every geometrically
finite subgroup H of Γ is separable in Γ, i.e. for every g ∈ Γ\H there exists a finite-index
subgroup K 6 Γ such that g does not belong to K and such that H ⊂ K.

Notice that equivalently we can say that Γ is GFERF if every geometrically finite
subgroup is closed in the profinite topology, or if every geometrically finite subgroup H
is the intersection of all the finite index subgroup of Γ containing it.

The following theorem is fundamental for the proof of Step 3. It has been proven by
Bergeron, Haglund and Wise in [37].

Theorem 3.3.6. Let Γ < O+(n, 1) be an arithmetic group of simplest type. Then Γ is
GFERF.

We can now approach the proof of Step 3. Until now we have embedded the torsion-
free arithmetic lattice of simplest type Γ < Isom(Hn) into an arithmetic lattice of simplest
type Λ < Isom(Hn+1).

We start by recording that the torsion part of Λ cannot be too "wild".
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Proposition 3.3.7. There exists only a finite number [h1], . . . , [hn] of conjugacy classes
of non-trivial elements of finite order in Λ.

Proof. We know that Λ has a convex finite-sided fundamental polyhedron P . If h has
finite order then it has a fixed point and up to conjugation we can suppose that this
point lies on a face F of the polyhedron P .

Therefore h must send the polyhedron P to one of its finite copies P1, . . . , Pk adjacent
to P in F , say Pi, and by definition of fundamental domain h is also the only element in
Λ that sends P to Pi.

Since P has only finite faces and each face is adjacent to finite copies of P , we conclude
that there exists only a finite number of torsion elements, up to conjugacy.

Lemma 3.3.8. Let h ∈ Λ be a torsion element. Then the closure [h] of the conjugacy
class of h in Λ̂ consists entirely of elements of finite order.

Proof. Recall from Appendix A.2 that Λ̂ is second countable.
Let η ∈ Λ̂ be an element in [h] and let (λn)n∈N be a sequence in [h] converging to

η. By hypothesis we can therefore write each λn as βnhβ−1
n for some βn ∈ Λ, and by

compactness of Λ̂, up to passing to a subsequence, we can suppose that βn ! β for some
β ∈ Λ̂.

By continuity of taking the inverses and of the multiplication, we deduce that
β−1
n ! β−1 and that

η = lim
n!∞

βnhβ
−1
n = ( lim

n!∞
βn)h ( lim

n!∞
β−1
n ) = βhβ−1.

Therefore η is conjugated to h in Λ̂ and by consequence η has finite order.

Remark 3.3.9. Notice that knowing that Γ is geometrically finite as subgroup of
Isom(Hn) does not a priori imply that Γ is also geometrically finite when thought as a
subgroup of Isom(Hn+1).

Luckily the way we have embedded Γ in Isom(Hn+1) clearly implies that Γ is geomet-
rically finite. In fact, a convex, exact, fundamental polyhedron for the action of Γ on
Hn+1 is obtained by adding all the geodesics orthogonal to a fundamental polyhedron for
Γ in Hn, as it is suggested in Figure 3.2.
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Figure 3.2

Lemma 3.3.10. The closure Γ̄ of Γ in Λ̂ is isomorphic to Γ̂.

Proof. By following the discussion at the end of Appendix A.2 and by using Fact A.2.7
we only need to prove that given any finite-index subgroup Γ1 < Γ there is a finite-
index subgroup Λ1 < Λ such that Λ1 ∩ Γ < Γ1. If Γ1 has finite index in Γ, then Γ1 is
geometrically finite and therefore separable in Λ.

Consider the set {γ1, . . . , γm} of representatives of all the non-trivial left cosets of
Γ1 in Γ. For each γi there exists a finite index subgroup of Λ that contains Γ1 and is
disjoint from γi. If Λ1 is the intersection of these subgroups, then by construction Λ1 has
finite index in Λ and Λ1 ∩ Γ = Γ1.

In order to complete the proof of Step 3 we need the following result, whose proof
can be found in [22].

Fact 3.3.11. If Γ < Isom(Hn) is a torsion-free arithmetic lattice of simplest type then
its profinite completion Γ̂ is torsion-free.

Proof of Step 3. Recall that our aim is to find a subgroup of finite index in Λ that is
torsion-free and that contains Γ.

Let h be a non-trivial element of finite order in Λ. Due to Lemmas 3.3.8 and 3.3.10
and Fact 3.3.11 we have

[h] ∩ Γ̄ = ∅.

We show that this implies that there exists a finite index subgroup Λ̃ < Λ such that
Γ ⊂ Λ̃ and Λ̃ is disjoint from [h]. Let us fix a total order {H1, H2, . . . } on the set of finite
index subgroups2 of Λ that cointains Γ. Since Γ is geometrically finite in Isom(Hn+1)
and Λ is GFERF by Theorem 3.3.6, we have that Γ = ∩∞i=1Hi.

If such a Λ̃ would not exist we could find a sequence (ηn)n∈N ⊂ [h] such that ηn
belongs to the intersection of all the Hi with i ≤ m. By compactness of the profinite
completion the sequence (ηn)n∈N has a limit point η ∈ Λ̃. It is obvious that η belongs to

2they are countable for Lemma A.2.2.
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[h]. If η /∈ Γ̄ then there exists a finite-index closed subgroup K 6 Λ̃ such that Γ ⊂ K
and η /∈ K.

In virtue of Proposition A.2.6 we have that K = H̄i, where Hi = K ∩ Λ is one of the
finite-index subgroups of Λ that contain Γ, and by construction we know that η belongs
to the closure of Hi, thus obtaining a contradiction. Therefore η ∈ Γ̄ ∩ [h] and this is
absurd.

In this way we can find for each torsion element hi in Λ a finite-index subgroup
Λi ⊂ Λ that separates Γ from [hi]. Since there are only finitely many conjugacy classes of
torsion elements [h1], . . . , [hn] in Λ, the intersection

n⋂
i=1

Λi

is torsion free, has finite index in Λ and contains Γ.

3.4 Step 4. Promoting immersions to embeddings
We have now the following situation: we have embedded Γ < Isom(Hn) (or Γ(2), if n
is odd) in a torsion-free arithmetic lattice Λ in Isom(Hn+1). This embedding induces
a totally geodesic immersion of M = Hn/Γ (or M (2) = Hn/Γ(2)) into an orientable
hyperbolic manifold W ′ = Hn+1/Λ of dimension n+ 1.

This immersion needs not to be an embedding, but we now show that in our situation
it is always possible to embed M into a finite cover W of W ′.

The key point is the following lemma, which describes a geometric counterpart of the
subgroup separability. We state the lemma in our setting, but it is clear that it can be
immediately generalised to all closed manifolds.

Lemma 3.4.1. Suppose that W ′ = Hn+1/Λ is a closed hyperbolic manifold and let H be
a subgroup of Λ. Then H is separable in Λ if and only if for every compact subset C of
Hn+1/H there is a finite sheeted covering W = Hn+1/K !W ′, with H 6 K, so that the
natural map

Hn+1/H ! Hn+1/K

is an embedding when restricted to C.

Proof. Let us suppose that H is separable and let C ⊂ Hn+1/H be a compact subset. It
is easy to show that there exists a compact subset D of Hn+1 such that the image of D
via the projection Hn+1 ! Hn+1/H is exactly C.

Since Λ acts properly discontinuously on Hn+1 the set

S = {g ∈ Λ| gD ∩D 6= ∅}

is finite, and therefore by separability we can find a finite-index subgroup K 6 Λ such
that K contains H and such that S ∩K ⊂ H. By construction, W = Hn+1/K is the
required finite covering of W ′.
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Conversely suppose that the geometric condition holds. Let g be an element of Λ \H
and fix a point x ∈ Hn+1. Since g does not belong to H, the set {x, gx} projects injectively
on Hn+1/H; consider its image as the compact C, and the finite-index subgroup K given
by the hypothesis clearly contains H and does not contain g, since {x, gx} embeds in
Hn+1/K.

Proof of Step 4 in the compact case. We only discuss the case when n is odd, but the
same proof adapts when n is even by replacing M with M (2) and Γ with Γ(2). Notice
that the way we have embedded Γ in Isom(Hn+1) is such that Hn+1/Γ ∼= M × R.

Consider Γ < Λ ⊂ Isom(Hn+1) and fix M = M × {0} ⊂ Hn+1/Γ as the compact
subset of Lemma 3.4.1. Since Γ is separable in Λ, there exists a finite cover W ! W ′

such that the immersion M ! W ′ lifts to a totally geodesic embedding M ↪! W , and
this is exactly what we wanted.

In order to deal with the non-compact case, we need the following result, which is a
consequence of the Margulis lemma. For a proof we refer to [20].

Proposition 3.4.2. Let M be a finite volume hyperbolic n-manifold, then M is union
of a compact submanifold with boundary M0 of dimension n and of a finite number of
components, called cusps, of the form V × [0,+∞), where V is a (n − 1)-dimensional
compact flat manifold.

Figure 3.3

Proof of Step 4 in the non-compact case. If M is non-compact of finite volume, one uses
the previous proposition and studies the behaviour of the map M !W ′ on the cusps of
M . It is not difficult to do this, one simply needs to study the counterimages of the cusps
via the projection Hn !M , as it is done in the second part of Theorem D.33 in [20].

The important thing is that the map M !W ′ sends each cusp V × [0,+∞) of M to
some cusp U × [0,+∞) of W ′ in the following way

V × [0,+∞)! U × [0,+∞)
(v, t) 7! (ϕ(v), t)

where ϕ : V ! U is a totally geodesic immersion of the flat (n− 1)-manifold V in the
flat n-manifold U , see [39].
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As a consequence of this, in order to make M totally geodesically embedded it is
enough to control the injectivity on the compact part M0 of M , and this can be done
exactly as in the compact case, by using Lemma 3.4.1.

We have thus completed the proof of Theorem 3.0.4. In the next chapter we will also
need the following little improvement of this embedding result.

Proposition 3.4.3. Let i : M ↪!W be the totally geodesic embedding given by Theorem
3.0.4. Then i lifts to a non-separating totally geodesic embedding of M into a finite cover
of W .

Proof. Let us suppose that M separates W in W+ and W− and let Γ and Λ denote the
fundamental groups of M and W respectively. By the Van Kampen theorem we have a
decomposition of Λ as the amalgamated product

Λ = A ∗Γ B

where A = π1(W+) and B = π1(W−).
It is easy to show that there exist elements a ∈ A \ Γ and b ∈ B \ Γ. By using the

separability of Γ in Λ we find a finite-index subgroup Γ̃ < Λ such that Γ ⊂ Γ̃ and a and b
do not belong to Γ̃. Consider the finite cover

W̃ = Hn+1/Γ̃!W.

We show that M lifts to a non-separating embedding in W̃ .
In fact, let us fix a base point x0 ∈M and let α and β be two loops representing a

and b respectively, intersecting M only in the point x0, as in Figure 3.4. By the definition
of Γ̃, we have that M lifts to a finite number of disjoint copies Mi in W̃ , while the loops
α and β cannot be lifted as loops in W̃ , since a and b do not belong to Γ̃.

Figure 3.4

We can define recursively a family of paths {c1 = α̃1, c2 = β̃2, . . . } lifting alternately
α and β and a family {M1,M2, . . . } of disjoints liftings of M in such a way that the path
ci joins Mi to Mi+1. Since the covering W̃ !W is finite, there exists a l ∈ N such that
the path cl joins Ml with some copy Mi and since α and β cannot be lifted as closed
loops, we necessarily have i < l. We have in this way constructed a closed loop, namely
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ci · ci+1 · cl, that intersects Ml transversely in exactly one point, and therefore Ml is non
separating.

Figure 3.5



Chapter 4

Hyperbolic four-manifolds with
vanishing Seiberg-Witten
invariants

In this last chapter we show the existence of four-dimensional hyperbolic manifolds whose
Seiberg-Witten invariants all vanish. We follow the discussion presented by Agol and Lin
in [23].

Recall how we defined, in Chapter 1, the intersection form QM of a closed oriented
four-dimensional manifold M , and the consequent definition of b±2 (M). In this chapter
we will also refer to the intersection form when M has boundary. This can be defined
analogously, as the bilinear map

QM : H2(M,∂M ;Z)×H2(M,∂M ;Z)! Z

obtained by setting QM (α, β) =< α ^ β, [M ] >, where [M ] ∈ H4(M,∂M,Z) is the
fundamental class of M .

In virtue of the Poincaré isomorphism H2(M) ∼= H2(M,∂M), this intersection form
has a geometrical interpretation too, which is completely analogous to the one of the
boundary-less case.

We can therefore consider the restriction of QM on the torsion-free part of H2(M,Z)
and define b±2 (M) even when M has boundary, paying attention to the fact that in this
case QM can be degenerate.

Anyway there are some cases in which the intersection formQM ofM is non degenerate.
For example, the following proposition describes a sufficient condition for this to happen.
Lemma 4.0.1. Let M be a compact orientable four-manifold and let ∂M be a rational
homology sphere. Then the intersection form QM is non degenerate.
Proof. In order to prove that QM is non degenerate it is enough to work with rational
coefficients. Therefore we consider

QM : H2(M,Q)×H2(M,Q)! Q

53
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and we can equivalently consider the associated homomorphism

Q̃M : H2(M,Q)! HomQ(H2(M,Q),Q)
α 7! QM (α, ·).

It is clear that QM is non degenerate if and only if Q̃M is an isomorphism.
In virtue of the universal coefficient theorem and the Poincarè duality we have the

isomorphisms:

HomQ(H2(M,Q),Q) ∼= H2(M ;Q) ∼= H2(M,∂M,Q)

and if we denote with j the inclusion map j : (M, ∅)! (M,∂M) we obtain the following
commutative diagram:

H2(M,Q) j∗ //

Q̃M

))

H2(M,∂M,Q)

∼
��

HomQ(H2(M,Q),Q).

The commutativity of this diagram implies that in order to prove that Q̃M is an isomor-
phism it is enough to prove that j∗ is an isomorphism, and this follows from the long
exact sequence of the pair (M,∂M):

· · ·! H2(∂M,Q)! H2(M,Q) j∗! H2(M,∂M,Q)! H1(∂M,Q)! · · · .

In fact, since ∂M is a rational homology sphere we have that j∗ is injective and surjective.

Remark 4.0.2. Notice that the proof of the previous lemma can obviously also be
applied when the boundary of M is the disjoint union of rational homology spheres.

Recall from Chapter 1 that the Seiberg-Witten invariants are actually invariants of
the manifold M if b+2 (M) ≥ 2, and therefore we will always suppose that our manifolds
satisfy this hypothesis, whenever we talk about their Seiberg-Witten invariants.

As we have seen, a huge amount of work needs to be done in order to define these
invariants; this is a big obstacle to overcome when one wants to do explicit calculations.

Luckily, there are some general results that help us in knowing whether these invariants
all vanish. We recall here a few of them, whose proofs can be found in [40], [41] and [42].

Theorem 4.0.3. Suppose that M is a closed oriented four-manifold.

• If M = M1#M2, where b+2 (Mi) ≥ 1 for i = 1, 2, then all the Seiberg-Witten
invariants of M vanish.

• If M admits a metric with positive scalar curvature, then all the Seiberg-Witten
invariants of M vanish.
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• if M admits a symplectic structure, then there exists at least one non-vanishing
Seiberg-Witten invariant. In particular, this holds if M is a complex surface.

Notice that simply by combining these (non-)vanishing results one discovers that the
existence of a metric satisfying a suitable curvature condition rules out the existence of a
complex structure on a given closed four-manifold.

There are some easier-to-state vanishing criteria, due to the fact that the cohomology
classes that we want to evaluate on the fundamental class of the Seiberg-Witten moduli
space are all of even degree. Therefore if the virtual dimension of the moduli space is
odd for all the spinC structures on the four-manifold M the Seiberg-Witten invariants
are all zero.

Recall that the virtual dimension d(σ) of the moduli space Mσ associated to the
spinC structure σ is equal to

1
4

(
c1(σ)2 − (2χ(M) + 3 sign(M))

)
.

It is easy to show that, since c1(σ) is a characteristic element, the quantity c1(σ)2−sign(M)
is always equal to zero modulo 8, and therefore the parity of d(σ) is the same of

1
2(χ(M) + sign(M)) = 1− b1 + b+2 .

This implies, for example, that if M is simply connected and b+2 is even, then the Seiberg-
Witten invariants of M all vanish.

Let us return to the world of hyperbolic manifolds. In [43], Lebrun claimed the
following conjecture.

Conjecture 4.0.4. Let M be a compact hyperbolic four-manifold. Then all the Seiberg-
Witten invariants of M vanish.

This conjecture is motivated by his result that for a hyperbolic four-manifold the
Seiberg-Witten basic classes1 satisfy much stronger constraints than one would expect.

There are not many examples of hyperbolic four-manifolds whose Seiberg-Witten
invariants have been calculated; for instance, Agol and Lin in [23] state of not being
aware of any existing examples of hyperbolic four-manifolds with b1 = 0 and b+2 even.

The construction we are going to show, instead, can be generalised to provide infinitely
many commensurability classes of arithmetic four-manifolds with representatives whose
Seiberg-Witten invariants all vanish, and can also be used to find non-arithmetic examples.

The fundamental result onto which this construction is based is the following gen-
eralisation of the vanishing result for connected sums, whose proof can be found in
[23].

1i.e. the classes in H2(M ;Z) such that the associated moduli space is not empty.
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Proposition 4.0.5. Let M be a four-manifold given as M = M1 ∪Y M2. Suppose
that the separating hypersurface Y is an L-space and that b+2 (Mi) ≥ 1. Then all the
Seiberg-Witten invariants of M vanish.

We will not give the definition of L-space, since this would imply the introduction of
a whole new technical toolkit. There are some homology groups that one can associate to
a closed oriented three-manifold, called monopole Floer homology groups. The definition
of L-space sits inside this context, and we refer to [23] and [40] for details.

The only thing about L-spaces we need in our discussion is that by definition an
L-space is also a rational homology sphere. Examples of L-spaces are the three-sphere
S3 and the Lens spaces.

In virtue of the previous proposition, a good plan to build hyperbolic four-manifolds
with vanishing Seiberg-Witten invariants consists in considering an L-space and studying
its separating embeddings as a hypersurface in some hyperbolic four-manifold. The main
theorem of Chapter 3 is here to help us. Of course, a little adaptation is needed.

The first observation to do is that if Y = H3/Γ is a hyperbolic three-manifold of
simplest type then Theorem 3.0.4 provides us only a totally geodesic embedding of the
cover Y (2) = H3/Γ(2). The following proposition describes a sufficient condition for
having Y = Y (2).

Proposition 4.0.6. Let Y = H3/Γ be a hyperbolic three-manifold of simplest type. If
H1(Y,Z/2Z) = 0 then Γ = Γ(2).

Proof. In virtue of the universal coefficient theorem we have:

HomZ(H1(Y,Z),Z/2Z) ∼= H1(Y ;Z/2Z) ∼= HomZ/2Z(H1(Y,Z/2Z),Z/2Z) = 0

and therefore there are no non-trivial homomorphisms from H1(Y,Z) to Z/2Z.
It is easy to see that Γ(2) is a normal subgroup of Γ. The quotient Γ/Γ(2) is a finitely

generated2 group such that all the non-trivial elements have order 2, and therefore must
be isomorphic to (Z/2Z)n for some n ∈ N. In particular, if Γ/Γ(2) is non trivial we can
define a non-trivial homomorphism

Γ! Γ/Γ(2) ! Z/2Z

that clearly descends to a non-trivial element of HomZ(H1(Y,Z),Z/2Z), and this is a
contradiction.

Therefore we also require the L-space Y we are looking for to have vanishing first
Z/2Z-homology group. Also recall that we need Y to embed in a "non-trivial" separating
way. We can relax this request thanks to the following proposition.

2since Γ is finitely generated.
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Proposition 4.0.7. Suppose M is an orientable four-manifold with b+2 ≥ 1 which
contains an embedded non-separating L-space Y . Then M admits infinitely many covers
which have all vanishing Seiberg-Witten invariants.
Proof. We can define a double cover M̃ of M in the following way. We cut M along
Y so to obtain an oriented cobordism W from Y to Y , and we consider two copies W1
and W2 of this cobordism, whose boundaries are Y1,−Y1 and Y2,−Y2 respectively; the
manifold M̃ obtained by gluing W1 and W2 along the identities Y1 = −Y2 and −Y1 = Y2,
as in figure 4.1, doubly covers M . To convince ourselves, notice that M̃ has an obvious
free action of Z/2Z given by exchanging W1 and W2, and the quotient for this action is
exactly M .

Figure 4.1

Let γ be an embedded proper arc inside W1 joining the two copies of Y in M̃ . If we
denote by T a tubular neighbourhood of γ, we obtain a decomposition

M̃ = (W1 \ T ) ∪ (W2 ∪ T )

where these two submanifolds are glued along a copy of Y#(−Y ), as in figure 4.2

Figure 4.2
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In virtue of [44], the connected sum Y#(−Y ) is an L-space. We now prove that both
W1 \ T and W2 ∪ T have b+2 ≥ 1 and that b+2 (M̃) ≥ 2, so that we can apply Proposition
4.0.5 and deduce that M̃ has all vanishing Seiberg-Witten invariants.

We divide this proof in the following steps:

• b2(W ) = b2(M). Recall that W is the cobordism obtained cutting M along Y .
Since W has the same homotopy type of M \Y we identify these two spaces for the
following computation. We apply the Mayer-Vietoris sequence with coefficient in Q
to the decompositionM = W ∪U , where U ∼= Y × (0, 1) is a tubular neighbourhood
of Y ⊂M . We have:

H2(U ∩W,Q)! H2(W,Q)⊕H2(U,Q)! H2(M,Q)! H1(U ∩W,Q)

and since both U ∩W and U are homotopically equivalent to a union of rational
homology spheres, we deduce that b2(W ) = b2(M)

• b+2 (W ) ≥ 1. Since ∂W = Y t −Y is the union of disjoint rational homology
spheres we can apply Remark 4.0.2 and deduce that QW is non degenerate.
We consider a basis of H2(M,Z) and the non-singular matrix A representing QW
in such basis. Since b2(W ) = b2(M) we have that this matrix also represents the
intersection form QM over Q, and b+2 (M) ≥ 1 implies b+2 (W ) ≥ 1.

• b+2 (M̃) = 2b+2 (W ). This follows from the fact that, if considered over Q, the
intersection form of M̃ is the sum of the intersection forms of W1 = W and
W2 = W . In fact, sinceW1 andW2 are glued along the disjoint union of two rational
homology spheres it is easy to see, by applying the Mayer-Vietoris sequence, that
H2(M̃,Q) = H2(W1,Q)⊕H2(W2,Q), and then one concludes as in the previous
point.

• b+2 (W2 ∪ T ) = b+2 (W1 \ T ) ≥ 1. By using again the same ideas of the previous
points, one shows that b+2 (W2 ∪ T ) = b+2 (W ). Since we also have the equalities

b+2 (M̃) = b+2 (W1) + b+2 (W2) = b+2 (W1 \ T ) + b+2 (W2 ∪ T ),

we conclude that b+2 (W1 \ T ) = b+2 (W1), thus obtaining the thesis.

It is clear that this process can be iterated to obtain infinitely many finite covers of
M with this property.

Summing all up, suppose to have Y with the following properties:

• Y is an L-space;

• H1(Y,Z/2Z) = 0;

• Y is hyperbolic arithmetic of simplest type not defined over Q.
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Thanks to the propositions 3.4.3 and 4.0.6 we know that Y has a totally geodesic non-
separating embedding into a closed oriented hyperbolic four-manifold M ′ of simplest type.
In order to satisfy the hypotheses of the previous proposition we need that b+2 (M ′) ≥ 1.

We show that even this problem can be solved by passing to a finite cover of M ′.
First we recall the two following facts.

Fact 4.0.8. If M is an oriented closed hyperbolic four-manifold, then sign(M) = 0

This fact follows from the Hirzebruch signature formula and [45]. In particular, for a
closed hyperbolic manifold M we have

χ(M) = 2(1− b1 + b+2 ).

Therefore the Euler characteristic is always even.

Fact 4.0.9. If M is an oriented closed hyperbolic manifold, then Vol(M) = 4π2

3 χ(M).

For a proof of the latter fact see [46].

Lemma 4.0.10. If M ′ is an orientable closed hyperbolic manifold and M ! M ′ is a
double covering, then b+2 (M) ≥ 1.

Proof. In virtue of Facts 4.0.8 and 4.0.9 we have that χ(M ′) ≥ 2.
Since M !M ′ is a double covering we have that χ(M) ≥ 4 and therefore

1− b1(M) + b+2 (M) ≥ 2

which clearly implies b+2 (M) ≥ 1

4.1 Conclusion
We conclude this chapter with some comments. First of all we point out that there exists
a three-manifold Y satisfying the three proprieties we require. This manifold can be
found inside the family of the Fibonacci manifolds.

The Fibonacci manifold Mn is defined as the n-fold branched cover over the figure
eight-knot. It can be shown that M5 is hyperbolic, is a Z/2Z-homology sphere and is an
L-space3. MoreoverM5 is arithmetic of simplest type defined overQ(

√
5), see [24] and [47].

We also briefly explain how to use this construction to obtain examples of non-
arithmetic hyperbolic four-manifolds with vanishing Seiberg-Witten invariants. There is
a cut and paste technique, called interbreeding and introduced by Gromov and Piatetski-
Shapiro in [48], that allows us to obtain non-arithmetic hyperbolic manifolds by cutting
and gluing arithmetic manifolds. The result is the following, and a proof can be found in
[21] or [48].

3technically with coefficients in Z/2Z, but this is enough for applying Proposition 4.2, see Remark 2.4
in [23].



CHAPTER 4. HYPERBOLIC 4-MANIFOLDS AND SW INVARIANTS 60

Theorem 4.1.1. Suppose that M1 and M2 are arithmetic closed n-manifolds, and let Cj
be a totally geodesic hypersurface in Mj, for j = 1, 2. Suppose that M1 \ C1 and M2 \ C2
are connected and fix an isometry f : C1 ! C2.

If the hyperbolic manifold M1#fM2 is arithmetic, then M1#fM2 is commensurable
to both M1 and M2.

In particular, we have that if M1 and M2 are not commensurable, then M1#fM2
cannot be arithmetic.

In the case of our interest we simply need to recall how the embedding of Theorem
3.0.4 was constructed, and adapt the proof in order to find embeddings of the Fibonacci
manifold M5 into non-commensurable arithmetic four-manifolds.

Indeed, it is possible to construct infinitely many of such embeddings. Recall that
if Q denotes the admissible quadratic form over Q(

√
5) defining M5, in Theorem 3.0.4

we embedded O(Q) inside the orthogonal group of the four-dimensional quadratic form
Q1 = y2 +Q. Of course we could have considered more generally quadratic forms of the
type Qd = dy2 +Q, with d ∈ N.

It is not difficult to show (see for example [48]) that if d1/d2 is not a square in Q(
√

5),
then the four-manifolds obtained by considering the embedding of O(Q) in O(Qd1)
and O(Qd2) are not commensurable, and so by interbreeding we obtain non-arithmetic
manifolds containing M5 as non-separating hypersurface.



Appendix A

Group Theory

A.1 Lie groups and Lie algebras
Throughout this chapter we will admit disconnected Lie groups, with finitely many
connected components. If G is a non-connected Lie group, we will denote with G◦ the
connected component of the identity. Notice that G◦ is a normal subgroup of finite index
in G.

We will also suppose, unless otherwise stated, that our Lie groups are closed subgroups
of SL(n,R) for some n, even if many of the results we are going to present can be easily
generalised. For a more detailed argument we refer to [21].

We start by recalling some definitions about Lie groups and Lie algebras.

Definition A.1.1. Let g be a Lie algebra. An ideal of g is a vector subspace h such
that [g, h] ⊂ h.

Definition A.1.2. A Lie algebra g is simple if it is not abelian1 and has no non-trivial
ideals.

Example A.1.3. The Lie algebra sl(n,R) is simple.

Definition A.1.4. A Lie algebra g is semisimple if it is isomorphic to a finite product
of simple Lie algebras.

Observation A.1.5. If g is simple we have that [g, g] = g. In fact [g, g] is an ideal of g
and cannot be equal to 0 since g is not abelian. Analogously, if g = ⊕ni=1gi is semisimple,
by the bilinearity of the bracket we have

[g, g] = [⊕ni=1gi,⊕nj=1gi] = ⊕ni=1 ⊕nj=1 [gi, gj ] = ⊕ni=1gi = g.

Definition A.1.6. • G1 is isogenous to G2 if there is a finite, normal subgroup Ni

of a finite-index subgroup G′i of Gi , for i = 1, 2 , such that G′1/N1 is isomorphic to
G′2/N2.

1i.e. [g, g] 6= 0.

61
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• A homomorphism ϕ : G1 ! G2 is an isogeny if it has finite kernel and its image
has finite index in G2.

• Two subgroups Λ1 and Λ2 of G are said to be commensurable if the intersection
Λ1 ∩ Λ2 has finite index in both Λ1 and Λ2.

It is not difficult to show that the relation of commensurability is an equivalence
relation.

We say that an element g in G commensurates Λ if gΛg−1 is commensurable to Λ,
and we define the commensurator of Λ in G as the subgroup

Comm(Λ) = {g ∈ G| g commensurates Λ}.

Definition A.1.7. • A Lie group G is simple if it is not abelian and has no non-
trivial, connected, closed, proper, normal subgroups.

• A Lie group G is semisimple if it is isogenous to a finite direct product of simple
Lie groups.

We have given many definitions, so we stop for a while and show some connections
among them. In order to do so, we first recall some basic results about the theory of Lie
groups and Lie algebras. We refer to [27] for proofs.

Remark A.1.8. In the statements of the following theorems the Lie groups are not
necessarily matrices groups (that is, subgroups of SL(n,R)).

Theorem A.1.9. If G is a Lie group and h is a Lie subalgebra of Lie(G) = g then there
is a unique connected Lie subgroup (not necessarily closed) H of G with Lie algebra h.

Theorem A.1.10 (Ado’s Theorem). Every finite dimensional real Lie algebra has an
embedding (of Lie algebras) into gl(n,R) for some n ∈ N.

Theorem A.1.11 (Lie’s Third Theorem). Every finite dimensional real Lie algebra is
the Lie algebra of some simply connected Lie group.

Theorem A.1.12. If φ : Lie(G1) ! Lie(G2) is a Lie algebra homomorphism and G1
is simply connected, then there exists a unique Lie group homomorphism f : G1 ! G2
whose differential at the identity is φ.

It follows that for every real Lie algebra g there exists a unique (up to isomorphism)
simply connected Lie group G such that Lie(G) = g.

Also notice that it is not true that any Lie group can be embedded in GL(n,R) for
some n ∈ N, even if its Lie algebra can. It is well known, for example, that the universal
cover of SL(2,R) is not a matrix group.

Lemma A.1.13. If H is a finite-index subgroup of G then H is made out of connected
components of G. In particular H is open and closed.
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Proof. We divide the proof in three steps.
Step 1: G may be assumed connected. Clearly H0 = H ∩G◦ has finite index

in G◦. Let us suppose that we have shown that H0 = G◦ and let us prove that if Gi is a
connected component of G then H ∩Gi is either empty or equal to Gi. Notice that if g
is any element of Gi we have the equality Gi = gG◦. Hence if H ∩Gi is not empty we
can consider h in this intersection and obtain Gi = hG◦ = hH0 ⊂ H.

Step 2: H may be assumed normal. This is a standard argument. One simply
considers the action of G on the finite set G/H.

This action defines a homomorphism G! S[G:H] and the kernel of this homomorphism
is a normal subgroup of finite index contained in H.

Step 3: H = G. We show that any homomorphism f : G! F from G to a finite
group F , equipped with the discrete topology, is continuous.

In order to prove the continuity it is enough to show that some neighborhood U of the
identity in G is contained in the kernel. Consider a neighbourhood U which is contained
in the image of the exponential map exp : g! G. Then for any g ∈ U there exists some
one-parameter subgroup φ : R! G such that φ(1) = g.

We claim that the composition f ◦ φ : R! F is constant. In fact the image of such
homomorphism is a divisible group2 and clearly the only finite divisible group is the
trivial one.

Proposition A.1.14. The following hold:

1. If G is simple, and is not discrete, then G is connected.

2. If G is connected then G is simple if and only if g is simple.

3. If G1 is isogenous to G2 then g1 is isomorphic to g2. In particular if G is semisimple
then g is semisimple.

Proof. 1. The connected component of the identity G◦ is a normal connected subgroup,
and it is also closed by general topology. Since G is not discrete we have G◦ = G.

2. Suppose that G is simple and let h be a proper ideal of g. It is easy to show that
if H < G is the connected Lie group given by Theorem A.1.9 then H is normal
(because h is an ideal). It follows by [26] that H is also closed in G. Hence H is
trivial and h = 0.
On the other side, let H be a closed connected normal subgroup of G. It is a
standard result that closed subgroups of Lie groups are actually Lie groups3 and so
we can consider h = Lie(H) ⊂ g. Since H is normal we have that h is an ideal of g,
and therefore h must be trivial or equal to g. If h = 0 then H is discrete, whereas if
h = g we have that H contains a neighbourhood of the identity and is hence open
and, by connectedness, equal to G.

2i.e. an abelian group such that for every positive integer n and every element x there exists y such
that ny = x.

3cfr. [27].
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3. The thesis follows from the facts that if H is a finite-index subgroup of G then
h = g and that if K is a finite normal subgroup of H then the projection H ! H/K
is a covering and hence h ∼= Lie(H/K).

Proposition A.1.15. Let G be a connected semisimple Lie group, and let ϕ : G! A be
a continuous homomorphism, where A is abelian. Then ϕ is trivial.

Proof. Since G is not abelian ϕ cannot be injective. Let H denote the kernel of ϕ and
let us denote by h ⊂ g its Lie algebra.

Since G/H is abelian we have

[Lie(G/H),Lie(G/H)] = [g/h, g/h] = 0.

The last equality is equivalent to [g, g] ⊂ h, and since g = [g, g] we get that h = g.
In particular, the inclusion H ↪! G is a local diffeomorphism at the identity and

therefore H contains a neighbourhood of the identity. By homogeneity we deduce that
H is open, and since it is also obviously closed, by connectedness we have H = G.

A.2 Profinite topology and completion
We recall here some definitions and a few basic results regarding the theory of profinite
groups. We focus on the case of discrete and finitely generated groups, since we apply
this theory only to the case of lattices in Isom(Hn), but of course what will be said can
sometimes be easily generalised. We refer to [35] for a complete discussion about these
topics and to [34] for a more specialised discussion on the discrete case.

Let Γ be a discrete finitely generated group. The profinite topology on Γ is the
topology in which a base for the open sets is the family of all cosets of normal subgroups
of finite index in Γ. Equivalently, it can be defined by saying that it is the unique
topology compatible with the group multiplication such that a fundamental system of
neighbourhoods for the identity is given by the normal subgroups of finite index.

Example A.2.1. Many separability conditions can be expressed in the language of
profinite topology. Here are some examples.

• Γ is residually finite if and only if the profinite topology on Γ is Hausdorff.
Recall that by definition Γ is residually finite if for every element γ ∈ Γ there exists
a normal subgroup of finite index N �Γ that does not contain γ. This is equivalent
to say that the intersection of all the normal subgroup of finite index in Γ is trivial.

• Γ is LERF (locally extended residually finite) if every finitely generated subgroup
H is closed in the profinite topology. This is equivalent to saying that for every
γ ∈ Γ \H there exists a subgroup of finite index N that contains H and such that
γ /∈ N .
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Lemma A.2.2. Let Γ be discrete and finitely generated. Then Γ contains only countably
many finite-index subgroups.

Proof. We first show that there exist countably many normal subgroups of finite index.
In fact for a fixed index d there exists a finite number of isomorphism classes of groups
of cardinality d. If {G1, . . . , Gk} are representatives of these classes, we have that the
set of the normal subgroups of index d in Γ is in bijection with the set of surjective
homomorphisms from Γ to these groups, and since Γ is finitely generated there are only
a finite number of such homomorphisms.

The result for all the finite-index subgroups follows from the fact that every finite
index subgroup H contains a finite-index normal subgroup N4 and there is only a finite
number of subgroups of Γ that contain N , since these are in bijection with the subgroups
of Γ/N .

The previous lemma, together with the fact that Γ is countable, implies the following
corollary.

Corollary A.2.3. The profinite topology on a discrete and finitely generated group Γ is
second countable.

If we denote with N the set of all the finite-index normal subgroups of Γ, we can
make N a directed set by declaring that

M ≤ N if M contains N ∀M,N ∈ N .

By passing to quotients, these containments induce surjective homomorphisms

φNM : Γ/N ! Γ/M

and we obtain an inverse system (Γ/N, φNM ,N ). We define the profinite completion of
Γ as the inverse limit of this system, and denote it with Γ̂:

Γ̂ = {(xN ) ∈ Γ/N |φNM (xN ) = xM , whenever N ≥M}

Observation A.2.4. • Γ̂ is a non-empty, compact, Hausdorff, totally disconnected
topological group.

• There is a natural map j : Γ! Γ̂ defined by g 7! (gN)N∈N . This map is injective
if and only if G is residually finite.

The profinite completion of Γ can alternatively be described as the closure j(Γ) of
the image of Γ in ∏{Γ/N |N ∈ N} via the map j.

As a consequence of Lemma A.2.2 we have that Γ̂ is second countable. In fact, we can
numerate the finite-index normal subgroups H1, H2, . . . , of Γ and consider the subfamily
T of N defined in the following way:

T = {H̃1, H̃2, . . . }
4see Step 2 of A.1.13.
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where H̃i is the intersection of the subgroups Hj for 1 ≤ j ≤ i. Notice that the partial
order on N restricts to a total order on T and that T is cofinal in N , in the sense that
for every N ∈ N there exists a T ∈ T such that N ≤ T .

The cofinality of T in N implies, by general properties of inverse limits, that the
natural map Γ̂! Γ̂T is an isomorphism, where Γ̂T denotes the inverse limit taken over
the family T . So we can identify the profinite completion of Γ with Γ̂T , that is second
countable in virtue of the following proposition.

Proposition A.2.5. A profinite space X is second countable if and only if

X ∼= lim
 −

i∈IXi

where (I,≤) is a countable totally ordered set and each Xi is a finite discrete space.

Notice that since Γ̂ is a compact topological group, a subgroup U 6 Γ̂ is open if and
only if it is closed and of finite index. Moreover, it is a consequence of a recent theorem
by Nikolov and Segal [36] that if Γ is finitely generated then every finite-index subgroup
of Γ̂ is open.

Proposition A.2.6. If Γ is a finitely generated residually finite group, then there is
a one-to-one correspondence between the set X of subgroups of Γ that are open in the
profinite topology on Γ, and the set Y of all finite-index subgroups5 of Γ̂.

Identifying Γ with its image in the completion, this correspondence is given by:

• For H ∈ X , H 7! H̄.

• For Y ∈ Y, Y 7! Y ∩ Γ.

If H and K are elements in X and K < H then [H : K] = [H̄ : K̄]. Moreover, K �H if
and only if K̄ � H̄, and H/K ∼= H̄/K̄.

As a corollary of the previous proposition, we have that if Γ is residually finite and
finitely generated then Γ̂ induces on Γ exactly the profinite topology.

Let us suppose that Γ is torsion free. If H is a subgroup of Γ we can ask whether the
topology induced by Γ̂ on H is the profinite topology of H. By properties of the profinite
completion (see Lemma 3.2.1 of [35]) we have that there exists a continuous surjective
map Ĥ ! H̄. The subspace topology induced on H from Γ̂ is the profinite topology if
and only if this map is an isomorphism, and we have the following fact.

Fact A.2.7. If for every subgroup H1 of finite index in H there exists a finite-index
subgroup Γ1 < Γ such that Γ1 ∩H < H1, then the map Ĥ ! H̄ is injective.

5i.e. all the open subgroups, in virtue of [36].



Bibliography

[1] Norman Steenrod. The Topology of Fibre Bundles. Princeton University Press, 1951.

[2] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry,
Volume 1. Interscience Publishers, 1963,

[3] Liviu I. Nicolaescu. Notes on Seiberg-Witten Theory. Avalaible at the site https:
//www.nd.edu/~lnicolae/swnotes.pdf

[4] John W. Morgan. The Seiberg-Witten Equations and Applications to the Topology of
Smooth Four-Manifolds. Princeton University Press, 1996

[5] Dietmar Salamon. Spin Geometry and Seiberg-Witten Invariants. University of
Warwick, 1996.

[6] H. Blaine Lawson jr. and Marie-Louise Michelson. Spin Geometry. Princeton Univer-
sity Press, 1989.

[7] Shigeyuki Morita. Geometry of Differential Forms. American Mathematical Society,
2001.

[8] John W. Milnor and James D. Stasheff. Characteristic Classes. Princeton University
Press and University of Tokyo Press, 1974.

[9] Simon K. Donaldson (1987). Irrationality and the h-cobordism conjecture. J. Differ-
ential Geom. 26 (1): 141–168.

[10] Donaldson, Simon (1983). An Application of Gauge Theory to Four Dimensional
Topology. Journal of Differential Geometry, 18 (2): 279–315.

[11] Clifford Henry Taubes(1987). Gauge theory on asymptotically periodic 4-manifolds.
Journal of Differential Geometry. 25 (3): 363–430.

[12] John Stallings (1962). The piecewise-linear structure of Euclidean space. Proc.
Cambridge Philos. Soc. 58 (3): 481–488.

[13] Alexandru Scorpan. The Wild World of 4-Manifolds. American Mathematical Society,
2005.

67

https://www.nd.edu/~lnicolae/swnotes.pdf
https://www.nd.edu/~lnicolae/swnotes.pdf


BIBLIOGRAPHY 68

[14] Bruno Martelli, Stefano Riolo, Leone Slavich. Compact hyperbolic manifolds without
spin structures. arXiv:1904.12720, 2019.

[15] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[16] Allen Hatcher. Vector Bundle and K-Theory. Available at the site http://pi.math.
cornell.edu/~hatcher/

[17] A. Haefliger. Sur l’extension du groupe structural d’un espace fibré. C. R. Acad. Sci.
Paris. 243: 558–560, 1956.

[18] Michael H. Freedman. The topology of four-dimensional manifolds. Journal of Differ-
ential Geometry 17, 1982.

[19] Bruno Martelli. An introduction to Geometric Topology. CreateSpace Independent
Publishing Platform, 2016.

[20] Riccardo Benedetti, Carlo Petronio. Lectures on Hyperbolic Geometry. Springer-
Verlag, 1992

[21] D. W. Morris. Introduction to Arithmetic Groups.. Deductive Press, 2015. Available
on-line at http://arxiv.org/src/math/0106063/anc/

[22] Alexander Kolpakov, Alan W. Reid, Leone Slavich. Embedding arithmetic hyperbolic
manifolds. arXiv:1703.10561 [math.GT]

[23] Ian Agol, Francesco Lin. Hyperbolic four-manifolds with vanishing Seiberg-Witten
invariants. arXiv:1812.06536 [math.GT]

[24] Colin Maclachlan and Alan W. Reid. The arithmetic of hyperbolic 3-manifolds.
Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003.

[25] Daniel A. Marcus. Number Fields. Springer, 1977.

[26] David L. Ragozin. A Normal Subgroup of a Semisimple Lie Group is Closed.
Proceedings of the American Mathematical Society, Volume 32, Number 2, April 1972.

[27] Anthony W. Knapp. Lie Groups Beyond an Introduction. Birkhauser, 2002.

[28] G.A.Margulis. Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
1991.

[29] J. Ratcliffe. Foundations of hyperbolic manifolds. Graduate texts in mathematics
149, Springer-Verlag, 1994.

[30] JP. Serre. A Course in Arithmetic. Graduate Texts in Math. 7 Springer-Verlag,
1973.

[31] J.W.S. Cassels. Local Fields. Cambridge University Press, 1986.

http://pi.math.cornell.edu/~hatcher/
http://pi.math.cornell.edu/~hatcher/
http://arxiv.org/src/math/0106063/anc/


BIBLIOGRAPHY 69

[32] A. Borel. Density and maximality of arithmetic subgroups. J. reine angew. Math.
224 (1966), 78–89.

[33] V. Emery, J. G. Ratcliffe, and S. T. Tschantz. Salem numbers and arithmetic
hyperbolic groups. Trans. Amer. Math. Soc. (to appear); arXiv:1506.03727.

[34] A. W. Reid. Profinite properties of discrete groups. Proceedings of Groups St.
Andrews 2013, L.M.S. Lecture Note Series 242, 73–104, Cambridge Univ. Press (2015).

[35] L. Ribes and P.A. Zalesskii. Profinite Groups. Ergeb. der Math. 40, Springer-Verlag
(2000).

[36] N. Nikolov and D. Segal. On finitely generated profinite groups. I. Strong complete-
ness and uniform bounds. Annals of Math. 165 (2007), 171–238.

[37] N. Bergeron, F. Haglund, and D. T. Wise. Hyperplane sections in arithmetic hyper-
bolic manifolds. J. Lond. Math. Soc. 83 (2011), 431–448.

[38] B. H. Bowditch. Geometrical finiteness for hyperbolic groups. J. Funct. Anal. 113
(1993), 245–317.

[39] Nicolas Bergeron. Premier nombre de Betti et spectre du laplacien de certaines
variétés hyperboliques. Enseign. Math. (2) 46 (2000), no. 1-2, 109–137.

[40] Kronheimer, Peter and Mrowka, Tomasz. Monopoles and three-manifolds. New
Mathematical Monographs, 10. Cambridge University Press, Cambridge, 2007.

[41] E. Witten. Monopoles and four-manifolds. Math. Res. Lett., 1 (1994), pp. 809–822.

[42] C. H. Taubes. The Seiberg-Witten invariants and symplectic forms. Math. Res.
Lett., 1 (1994), pp. 809–822.

[43] Claude LeBrun. Hyperbolic manifolds, harmonic forms, and Seiberg-Witten in-
variants. Proceedings of the Euroconference on Partial Differential Equations and
theirApplications to Geometry and Physics (Castelvecchio Pascoli, 2000), vol. 91,
2002,pp. 137–154.

[44] Lin, Francesco. Pin(2)-monopole Floer homology, higher compositions and connected
sums. J. Topol. 10 (2017), no. 4, 921-969.

[45] Chern, Shiing-Shen. On curvature and characteristic classes of a Riemann manifold.
Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126.

[46] M. Spivak. A Comprehensive Introduction to Differential Geometry. 2nd Edition,
Publish andPerish, Wilmington, 1979.

[47] C. Maclachlan and A. W. Reid. The arithmetic structure of tetrahedral groups of
hyperbolic isometries. Mathematika 36 (1989), no. 2, 221–240 (1990).

[48] Gromov, M. and Piatetski-Shapiro, I. Nonarithmetic groups in Lobachevsky spaces.
Inst. des Hautes Études Sci. Publ. Math. No. 66 (1988), 93-103.


	Introduction
	Seiberg-Witten Invariants
	Bundles
	Vector bundles and principal bundles
	Structure groups and reduction of structure groups
	Connections and curvature

	Characteristic classes
	Stiefel-Whitney classes
	Chern classes and Chern-Weyl theory

	The Clifford algebra and its representations
	The representations of the Clifford algebra
	The SpinC group

	Spin and spinC structures
	The four-dimensional case

	The Seiberg-Witten invariants

	Arithmetic Groups
	Our motivational example: hyperbolic manifolds
	Lattices in semisimple Lie groups
	Arithmetic lattices in orthogonal groups

	Embedding arithmetic hyperbolic manifolds
	Step 1. Embeddings of orthogonal groups
	Step 2. Embeddings of arithmetic lattices
	Step 3. Immersions of hyperbolic manifolds
	Step 4. Promoting immersions to embeddings

	Hyperbolic four-manifolds with vanishing Seiberg-Witten invariants
	Conclusion

	Group Theory
	Lie groups and Lie algebras
	Profinite topology and completion

	Bibliography

