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Preface

This is the report for the seminar of the course ’Deep learning theory’. I presented the key results and
experiments from the paper [1]. The presentation lasted for one hour, focusing on the main points.
The detailed proofs can be found in the original paper.

1 Overview of Federated learning

Federated learning is a decentralized approach to machine learning where multiple devices or clients
collaborate to train a shared model without sharing their raw data. This leads to a double benefit:
preservation of privacy and avoiding to transfer large volumes of data.

Federated learning has gained significant attention in recent years due to its potential applications
in various domains:

- Smartphone: next-word prediction (used by Google’s G-board), voice and face recognition (used
by Apple’s voice assistant Siri), etc.

- Healthcare: training a model on patient data without sharing it for drug discovery, tumor detec-
tion, etc.

- IoT: smart home, autonomous driving, etc.

- Finance: fraud detection, etc.

The baseline algorithm is the Federated Averaging algorithm (FedAvg) proposed by Google in 2017.
In FedAvg, each device trains a model on its local data and then shares only the local parameters
updates with a central server. The server then aggregates the shared model parameters to update the
global model, and broadcasts the updated global model to all devices.

1.1 FedAvg algorithm scheme

Let u(t) ∈ Rd×m be the global model at round t, wk,c(t) ∈ Rd×m denote the c-th client’s model at
round t after k local steps. The FedAvg algorithm can be summarized as follows:

• In t-th communication round, server broadcasts the global model u(t) ∈ Rd×m to every clients;

• Each client c starts with w0,c(t) = u(t) and takes K gradient descent steps to get wK,c(t);

• Each client sends the parameters update ∆uc(t) = wK,c(t)− w0,c(t) to the server;

• Server aggregates the client models to obtain the updated global model u(t+ 1) as follows:

u(t+ 1) = u(t) +
ηglobal
N

N∑
c=1

∆uc(t),

• Repeat the above steps for T rounds.

Tipically, the local data points are sampled from a non independent and identically distributed
distribution (non-IID), which can lead to poor performance of the global model and the convergence
may not be guaranteed. The main reason is the ’Client-drift’ phenomenon: the local dynamics tends
to the local optimum, which can be very different from the global optimum.
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2 Introduction

The paper [1] presents a theoretical analysis of the convergence of the FedAvg algorithm in the overpa-
rameterized regime. The main result is that the convergence of the FedAvg algorithm can be guaranteed
if the parameters are properly tuned. Up to the authors, it provides the first proof of convergence of
federated learning concerning neural networks with multi-step local updates. The training analysis is
non-trivial because the dynamics of the neural network does not follow the gradient direction and the
convergence is not guaranteed. Moreover, it holds without assumptions on the convexity of the loss
function or distribution of data.

The main idea is to analyze the dynamics of the ReLU neural networks in the overparameterized
regime by using the Neural Tangent Kernel (NTK) theory. The classical NTK theory cannot be
directly applied to the federated learning and the core of the paper is to extend the NTK theory to
the federated learning setting.

Furthermore, with additional distributional assumption, the authors provide a good generlization
bound for the global model.

3 Problem formulation

3.1 Notations

Let N be the number of clients (c its index), T the number of communications rounds (t its index),
K the number of local steps (k its index). u(t) ∈ Rd×m is the global model at round t, wk,c(t) denote
the c-th client’s model at round t after k local steps.

Let S1 ∪ S2 ∪ · · · ∪ SN = [n] be the partition of the data points and Si ∩ Sj = ∅, where Sc is the
set of data points on client c. The whole dataset is {(x1, y1), ...., (xn, yn)} ⊆ Rd ×R, for each client c:

yc ∈ R|Sc| denotes the ground truth with regard of its data, y
(k)
c (t) ∈ R|Sc| denotes the local model’s

prediction at round t after k local steps, y(k)(t) ∈ Rn is the aggregated global output at round t after
k local steps.

3.2 Setup

Let ϕ(z) = max(0, z) be the ReLU activation function, f : Rd → R be the one-hidden layer neural
network:

f(u, x) :=
1√
m

m∑
r=1

arϕ(u
T
r x),

where every column ur of u ∈ Rd×m is sampled from N (0, σ2Id) and a ∈ Rm is sampled from {−1, 1}m
uniformly. The loss functions are the following:

Lc(u, x) :=
1

2

∑
i∈Sc

(f(u, xi)− yi)
2, L(u) :=

1

N

N∑
c=1

Lc(u).

For the computation of the gradients of f we use the distributional derivative of the ReLU function:
ϕ′(z) = Iz>0. We want to minimize the global loss L(u) by using the FedAvg algorithm. The local
update ∆uc(t) is computed by taking K gradient descent steps on the local loss Lc(u):

∆uc,r(t) =

K∑
k=1

ηlocal∇Lc(wk,c(t)) =

K∑
k=1

ηlocal
ar√
m

∑
j∈Sc

−(y(k)c (t)− yj)xjIwk,c,r(t)T xj≥0.
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3.3 NTK analysis

In the centralized overparameterized setting, by [2], the dynamics of the neural network can be de-
scribed by the Neural Tangent Kernel:

H∞
i,j = Eu∼N (0,σ2Id)

[
ϕ′(uT

i x)ϕ
′(uT

j x)
]
.

In the federated learning setting, we are not in the same setting but we can use the local NTK to
analyze the training dynamics.

Let y ∈ Rn be the ground truth and y(t) = (y1(t), ..., yn(t)) the aggregated global output at round
t, where yi(t) = f(u(t), xi). We can compute:

∥y − y(t+ 1)∥22
=∥y − y(t)− (y(t+ 1)− y(t))∥22
=∥y − y(t)∥22 − 2(y − y(t))T (y(t+ 1)− y(t)) + ∥y(t+ 1)− y(t)∥22.

Now we focus on y(t+ 1)− y(t), for each i ∈ [n]:

yi(t+ 1)− yi(t)

=
1√
m

m∑
r=1

ar(ϕ(ur(t+ 1)Txi)− ϕ(ur(t)
Txi))

=
1√
m

m∑
r=1

ar

(
ϕ((ur(t) + ηglobal∆ur(t))

Txi)− ϕ(ur(t)
Txi)

)

Now, we give a definition that will be crucial for the analysis. For each data point xi, we distinguish
the set of the neurons whose activation pattern changes over time from the set of the neurons whose
activation pattern remains the same.

Definition 1. Fixed R > 0, for each i ∈ [n], we define the set Qi as follows:

Qi := {r ∈ [m] : ∀w ∈ Rd s.t. ∥w − wr(0)∥ ≤ R, Iwr(0)T xi≥0 = IwT xi≥0},

and let Q̄i its complement.

In this way, we can rewrite the difference yi(t+ 1)− yi(t) = v1,i + v2,i, where:

v1,i =
1√
m

∑
r∈Qi

ar

(
ϕ((ur(t) + ηglobal∆ur(t))

Txi)− ϕ(ur(t)
Txi)

)
,

v2,i =
1√
m

∑
r∈Q̄i

ar

(
ϕ((ur(t) + ηglobal∆ur(t))

Txi)− ϕ(ur(t)
Txi)

)
.

Assuming that the dynamics remains bounded, the key observation is that v1 can be written as:

v1,i =
1√
m

∑
r∈Qi

arηglobalx
T
i ∆ur(t)Iur(t)T xi≥0

=
ηglobalηlocal

Nm

∑
r∈Qi

∑
k∈[K]

∑
c∈[N ]

∑
j∈Sc

−(y(k)c (t)j − yj)x
T
i xjIur(t)T xi≥0, wk,c,r(t)T xj≥0.

Now we can define the following Gram matrix:
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Definition 2. For any t ∈ [T ], k ∈ [K], c ∈ [N ], we define H(t, k, c) as follows:

H(t, k, c)i,j :=
1

m

m∑
r=1

xT
i xjIur(t)T xi≥0, wk,c,r(t)T xj≥0,

H(t, k, c)⊥i,j :=
1

m

∑
r∈Q̄i

xT
i xjIur(t)T xi≥0, wk,c,r(t)T xj≥0.

With this definition, we can rewrite v1,i as:

v1,i =
ηglobalηlocal

N

∑
k

∑
c

∑
j

−(y(k)c (t)j − yj)
(
H(t, k, c)i,j −H(t, k, c)⊥i,j

)
. (1)

4 Properties and main results

4.1 Properties

Now we can show some properties that are classical in the NTK framework.

Proposition 1. For all t ∈ [T ],

i) Weights change lazily, for all r = 1, ...,m:

∥∆ur(t)∥2 ≤ O
(∥y − y(t)∥2

N
√
m

C(ηlocal ·K)
)

and

∥ur(t)− ur(0)∥2 ≤ O
(∥y − y(0)∥2

λ
√
m

)
;

ii) Activation patterns remain roughly the same, k ∈ [K], c ∈ [N ], with probability higher
than 1− n exp(−mR):

∥H(t, k, c)⊥∥F ≤ 4nR = O
(
1
)

and

∥v2∥2 ≤ O
(∥y − y(t)∥2

N
C(ηlocal ·K, ηglobalηlocal ·K)

)
.

iii) Global error controls model updates:

∥y(t+ 1)− y(t)∥2 ≤ O
(∥y − y(t)∥2

N2
C(ηlocal ·K, ηglobalηlocal ·K)

)
.

Definition 3. Let’s define the matrix H(t, k) coming from the combination of the Sc columns of
H(t, k, c) for all c ∈ [N ]:

H(t, k)i,j := H(t, k, c)i,j , ∀j ∈ Sc.

When k = 0, we can change the notation:

H(t)i,j := H(t, 0)i,j =
1

m

m∑
r=1

xT
i xjIur(t)T xi≥0, ur(t)T xj≥0,
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Observe that the definition is well posed because: S1 ∪S2 ∪ · · · ∪SN = [n] and Si ∩Sj = ∅. On the
basis of these properties, we can see that the dynamics of the error behaves in the following way:

∥y − y(t+ 1)∥22 ≃ ∥y − y(t)∥22 − 2
∑

k∈[K]

(y − y(t))TH(t, k)(y − y(k)(t)).

H(t, k) is not symmetric (unlike the classical NTK) and the intermediate model states influence the
globale update. The following facts will be useful to address these issues.

Proposition 2.

iv) If R ∈ (0, 1) and u1(0), ..., um(0)
iid∼ N (0, I), then with probability at least 1− n2 exp(−mR/10),

for all t ∈ [T ] and k ∈ [K]:

∥H(t, k)−H(0)∥F < 2nR,

if weights change lazily, ∀k ∈ [K], c ∈ [N ], r ∈ [m], t ∈ [T ], ∥wk,c,r(t)− ur(0)∥2 ≤ R.

v) Global error controls local error, for all t ∈ [T ] and k ∈ [K]:

∥y − y(k)(t)∥2 ≤ O
(
∥y − y(t)∥2 · C(ηlocal ·K)

)
.

4.2 Main result

Now we can state the main result of the paper.

Theorem 1 (Convergence). Let δ > 0, λ = λmin(H(0)) > 0. Let m = Ω(λ−4n4 log(n/δ)), we iid
initialize ur(0) ∼ N (0, I), ar sampled from {−1, 1} uniformly, for all r ∈ [m].
Set ηlocal = O

(
λ/(κKn2)

)
, ηglobal = O

(
1
)
, then with probability at least 1− δ we have for t ∈ [T ]:

∥y − y(t)∥22 ≤
(
1−

ηlocalηglobalλK

2N

)t

∥y − y(0)∥22.

Proof sketch. In order to prove the linear convergence of Theorem 1, we can show that the global
error decreases at each round: for all t = 0, 1, ...:

∥y − y(t+ 1)∥22 ≤
(
1−

ηlocalηglobalλK

2N

)
∥y − y(t)∥22.

As we have seen above:

∥y − y(t+ 1)∥22 = ∥y − y(t)∥22 − 2(y − y(t))T (y(t+ 1)− y(t)) + ∥y(t+ 1)− y(t)∥22. (2)

Focusing on the second term of the sum and using (1), we can write:

− 2(y − y(t))T (y(t+ 1)− y(t))

=− 2(y − y(t))T (v1 + v2)

=−
2ηglobalηlocal

N

∑
i∈[n]

∑
k∈[K]

∑
c∈[N ]

∑
j∈Sc

(yi − yi(t))(yj − y(k)c (t)j)
(
H(t, k, c)i,j −H(t, k, c)⊥i,j

)
− 2(y − y(t))T v2.

We can rewrite (2) as:

∥y − y(t+ 1)∥22 = ∥y − y(t)∥22 + C1 + C2 + C3 + C4,
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where

C1 = −
2ηglobalηlocal

N

∑
i∈[n]

∑
k∈[K]

∑
c∈[N ]

∑
j∈Sc

(yi − yi(t))(yj − y(k)c (t)j)H(t, k, c)i,j ,

C2 =
2ηglobalηlocal

N

∑
i∈[n]

∑
k∈[K]

∑
c∈[N ]

∑
j∈Sc

(yi − yi(t))(yj − y(k)c (t)j)H(t, k, c)⊥i,j ,

C3 = −2(y − y(t))T v2,

C4 = ∥y(t+ 1)− y(t)∥22.

Now, exploiting the properties of the section 4.1, we can bound these quantities. In particular:

• using properties iv) and v), we can prove that with probability at least 1− n2 exp(−mR/10):

C1 ≤
2ηglobalηlocal

N
∥y − y(t)∥22

(
−Kλ+ 4nRK(1 + 2ηlocalKn) + 2ηlocalκλK

2n
)
;

• using properties ii) and v), we can prove that with probability at least 1− n exp(−mR):

C2 ≤
16ηglobalηlocal

N
∥y − y(t)∥22KnR

(
1 + 2ηlocalnK

)
;

• thanks to lazy changes in parameters and activation patterns (properties i) and ii)), we can show
that with probability at least 1− n exp(−mR):

C3 = −2(y − y(t))T v2 ≤
16ηglobalηlocalK

N

(
1 + 2ηlocalnK

)
nR∥y − y(t)∥22;

• by property iii), we have that:

C4 = ∥y(t+ 1)− y(t)∥22 ≤
4η2globalη

2
localn

2K2
(
1 + 2ηlocalnK

)2
N2

∥y − y(t)∥22.

Let R = maxr∈[m] ∥ur(t) − ur(0)∥2 be the maximal movement of the weights. Thanks to the
property i), R is infinitesimal in m.
Choosing R ≤ λ

(1000n) , ηlocal ≤
λ

(1000n2K) and ηlocalηglobal ≤ λ
(1000n2K) and exploiting the bounds of

the Cis, we can show:

∥y − y(t+ 1)∥22 ≤ ∥y − y(t)∥22 −
1

2

ηlocalηglobalλK

N
∥y − y(t)∥22.

5 Experiments

The experiments consist in a 10 class classification tasks using ResNet56. For fair convergence com-
parison,the total number of samples n is fixed. Based on our main result Theorem 4.1, the figures
show the convergence with respect to the number of client N. There are the two settings: non-iid and
iid clients.

• iid Data distribution: is homogeneous in all the clients. Specifically, the label distribution
over 10 classes is a uniform distribution.

• non-iid Data distribution: is heterogeneous in all the clients. For non-IID splits,on every
client, training examples are drawn independently with class labels following a categorical distri-
bution over 10 classes parameterized by a vector q (qi ≥ 0, i ∈ [N ] and ∥q∥1 = 1). To synthesize
a population of non-identical clients, q ∼ Dir(αp) is dawn from a Dirichlet distribution, where
p characterizes a prior class distribution over 10 classes, and α, set to 0.5, is a concentration
parameter controlling the identicalness among clients.
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Figure 1: Training loss vs. communication rounds when number of clients N = 10, 50, 100 with iid
and non-iid setting using mini-batch SGD optimizer.

6 Comments

i) This paper provides the first general framework able to analyze the convergence of FedAvg with
multiple local steps in the overparameterized regime. In particular, the dynamics, which does
not follow the gradient direction, is described using an asymmetric matrix;

ii) A notable result is that the convergence is achieved without any assumptions on the convexity
of the loss function or the distribution of the data;

iii) An important hypotesis is the choice of ηlocal inversely proportional toK to limit the ’Client-drift’
phenomenon;

iv) The authors provide a generalization bound for the global model, with additional assumptions
on the distribution of the data;

v) It would be interesting to extend the analysis to different architectures and activation functions.
One problem might be the highly explicit approach used in the paper.
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