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1 Subgradient

1.1 Definition

We say that g ∈ Rn is a subgradient of f : Rn → R at x ∈ Rn if:

∀z ∈ Rn, f(z) ≥ f(x) + gT (z − x).

It is not necessary for f to be differentiable at x. In fact, as we can see in
Figure 1, there can exist more than one subgradient at a point of non-differentiability.
A function f is said to be subdifferentiable if it is subdifferentiable at every point.
We denote the set of subgradients of f at x as ∂f(x) and call it the subdiffer-
ential.

Figure 1: The function f(λ) = |λ| is not differentiable at 0 but has infinitely
many subgradients.

1.2 Existence of subgradients for convex functions

Theorem 1. If f : domf → R is a convex function and x ∈ int(domf), then
∂f(x) ̸= ∅.

Before proceeding with the proof, we state a classic lemma of separation. The
proof is omitted and can be found in [3] (Lemma 1.3).

Lemma (Supporting hyperplane theorem). Let C ⊆ Rn be a convex set, C ̸= ∅.

If y /∈ int(C) ⇒ ∃z∗ ∈ Rn, z∗ ̸= 0 such that < z∗, x > ≤ < z∗, y > ∀x ∈ C,

where < ·, · > denotes the Euclidean inner product.

Proof (Theorem 1). Without loss of generality, we can assume domf = Rn,
the proof can be easily adapted to any domain with non-empty interior.

2



Let f be a convex function and x ∈ Rn, we will show that ∂f(x) ̸= ∅. We apply
the above lemma to the convex set:

epi(f) = {(z, t) ∈ Rn × R | t ≥ f(z)}.

In particular, we obtain that there exist a ∈ Rn and b ∈ R, both not zero, such
that:[

a
b

]T ([
z
t

]
−
[

x
f(x)

])
= aT (z − x) + b(t− f(x)) ≤ 0, ∀(z, t) ∈ epi(f).

If b ̸= 0, dividing by b and taking t = f(z), we obtain:

f(z) ≥ f(x)− 1

b
aT (z − x),

which shows that −(a/b)T ∈ ∂f(x).
Now we show that b ̸= 0. If we assume b = 0 for contradiction, then:
aT (z− x) ≤ 0 ∀z ∈ Rn. Taking z = a+ x would imply a = 0 and b = 0, which
is a contradiction.

1.3 Properties

1) ∂f(x) is always a closed convex set, as it is the arbitrary intersection of
half-spaces:

∂f(x) =
⋂

z∈domf

{g | f(z) ≥ f(x) + gT (z − x)};

2) If f is continuous at x, then ∂f(x) is bounded. Indeed,
let ϵ > 0 be small enough. By continuity of f at x, there exists a constant
C > 0 such that for all y ∈ Rn with ∥y − x∥2 ≤ ϵ, we have ∥f(y)∥2 ≤ C.
If ∂f(x) is unbounded, then there exists a sequence gn ∈ ∂f(x) such that
∥gn∥2 → ∞.

Consider yn = x+ ϵ(gn/∥gn∥2), by the definition of subgradient:

f(y) ≥ f(x) + gTn (yb − x) = f(x) + ϵ∥gn∥2 → ∞, which is a contradiction

because f(yn) is bounded.

1.4 Characterization of minima

Lemma. x∗ is a minimum of a function f if and only if f is subdifferentiable
at x∗ and 0 ∈ ∂f(x∗).

Proof. (⇒) Follows from f(x) ≥ f(x∗) ∀x ∈ domf ;
(⇐) If 0 ∈ ∂f(x∗) then f(x) ≥ f(x∗) + 0T (x− x∗) = f(x∗) ∀x ∈ domf .
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2 Subgradient methods

Subgradient methods are very simple algorithms for minimizing convex func-
tions, not necessarily differentiable. The structure is very similar to that of the
gradient method with two main differences:

• It is not necessary for the function to be minimized to be differentiable;

• The directions given by the subgradient are not necessarily descent direc-
tions, as can be seen in Figure 1.

Like the gradient method, the subgradient method can also be adapted to the
constrained case. In the unconstrained case, it is generally slower than interior
point algorithms or the Newton method. However, it can be very advantageous
when applied to large-scale problems as it does not require a large amount
of memory. In general, it can be used in combination with primal or dual
decomposition techniques.
Next, we will discuss the constrained and unconstrained cases. We will present
the structure of different algorithms and some convergence results.
For the unconstrained case, we will explore the basic subgradient method by
varying different step sizes and the Polyak method.
For the constrained case, we will examine the projected subgradient method
and a subgradient method in a convex problem scenario.

2.1 Subgradient Method

The subgradient method is used to minimize f : Rn → R, where f is a convex
function. The algorithm has the following structure:

x(k+1) = x(k) − αkg
(k),

where x(k) is the k-th iterate, g(k) is any subgradient of f at x(k), and αk > 0
is the step size at iteration k. As mentioned before, g(k) may not be a descent
direction, so we need to keep track of the best point found so far. For this, we
define:

f
(k)
best = min{f (k−1)

best , f(x(k))} and x
(k)
best s.t. f(x

(k)
best) = f

(k)
best.

Hence:

f
(k)
best = min{f(x(1)), ..., f(x(k))}

and f
(k)
best is a decreasing sequence that converges to a limit in [−∞,+∞).
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2.1.1 Step Size Selection

The behavior of the algorithm can vary greatly depending on the choice of step
size. Here are some examples:

• Constant step size. αk = α is a positive constant, independent of k.

• Constant step length. αk = γ/∥g(k)∥2, where γ > 0, i.e.,

∥x(k+1) − x(k)∥2 = γ.

• Square summable but not summable. The step sizes satisfy:

αk ≥ 0,

∞∑
k=1

α2
k < ∞,

∞∑
k=1

αk = ∞.

• Infinitesimal but not summable. The step sizes are of the form αk =
γk/∥g(k)∥2, where:

γk ≥ 0, lim
k→∞

γk = 0,

∞∑
k=1

γk = ∞.

2.1.2 Convergence Results

Definition (ϵ-suboptimal). Let f : domf → R and f∗ be the minimum of f .
We say that x∗ ∈ domf is ϵ-suboptimal if f(x∗)− f∗ ≤ ϵ.

We will prove the convergence results under the following assumptions:

a) There exists x∗, a minimum point of f , such that f(x∗) = f∗.

b) ∂f(x) is a uniformly (in x) bounded set, i.e., there exists a constant G > 0
such that for all x ∈ domf and all g ∈ ∂f(x): ∥g∥2 ≤ G.

c) We know R > 0 such that ∥x(1) − x∗∥2 ≤ R.

As we have seen in Section 1.3, if f is continuous, then ∂f(x) is pointwise
bounded. Assumption b) can be relaxed by requiring uniform boundedness only
on the subgradients of the iterates. In general, this assumption is not necessary.
For example, the subgradient method with infinitesimal but not summable step
sizes works even without this assumption.
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The following convergence theorem holds:

Theorem 2 (Convergence). Under the above assumptions, different conver-
gence results are obtained depending on the choice of step size for the subgra-
dient method.

For constant step size and constant step length, the algorithm converges in an
ϵ-suboptimal manner, i.e.:

lim
k→∞

f
(k)
best − f∗ < ϵ,

for some ϵ > 0, which decreases with the step size parameter.

By choosing the square summable but not summable or infinitesimal but not
summable step sizes, we can guarantee convergence to the optimal value:

lim
k→∞

f(x
(k)
best) = f∗.

Before proceeding with the proof, we present a supporting lemma.

Lemma. Under the previous assumptions, for any choice of step sizes α and
any iterate k of the algorithm, the following inequality holds:

f
(k)
best − f∗ ≤

R2 +G2
∑k

i=1 α
2
i

2
∑k

i=1 αi

. (1)

Proof (Lemma). Let x∗ be a minimum point of f , we have:

∥x(k+1) − x∗∥22 = ∥x(k) − αkg
(k) − x∗∥22

= ∥x(k) − x∗∥22 − 2αkg
(k)T (x(k) − x∗) + α2

k∥g(k)∥22
≤ ∥x(k) − x∗∥22 − 2αk(f(x

(k))− f∗) + α2
k∥g(k)∥22,

where the first equality is by definition of x(k+1), and the last inequality is by
definition of subgradient. Applying the inequality recursively, we obtain:

∥x(k+1) − x∗∥22 ≤ ∥x(1) − x∗∥22 − 2

k∑
i=1

αi(f(x
(i))− f∗) +

k∑
i=1

α2
i ∥g(i)∥22.

Using that 0 ≤ ∥x(k+1) − x∗∥22 and ∥x(1) − x∗∥2 ≤ R, we have:

2

k∑
i=1

αi(f(x
(i))− f∗) ≤ R2 +

k∑
i=1

α2
i ∥g(i)∥22. (2)

Note that:

k∑
i=1

αi(f(x
(i))− f∗) ≥

(
k∑

i=1

αi

)
min

i=1,...,k
(f(x(i))− f∗) =

(
k∑

i=1

αi

)
(f

(k)
best − f∗),
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which implies:

f
(k)
best − f∗ = min

i=1,...,k
(f(x(i))− f∗) ≤

R2 +
∑k

i=1 α
2
i ∥g(i)∥22

2
∑k

i=1 αi

(3)

and using ∥g(i)∥22 ≤ G2, we have:

f
(k)
best − f∗ ≤

R2 +G2
∑k

i=1 α
2
i

2
∑k

i=1 αi

.

Proof (Theorem 2). Using the lemma, we prove the convergence results by
distinguishing the type of step size.

Constant step size αk = α:

f
(k)
best − f∗ ≤ R2 +G2α2k

2αk
.

The right-hand side of the equation converges to G2α/2 as k → ∞. In particu-

lar, f
(k)
best converges in an G2α/2-suboptimal manner.

Constant step length: if αk = γ/∥g(k)∥2, using the inequality (3):

f
(k)
best − f∗ ≤ R2 + γ2k

2
∑k

i=1 αi

≤ R2 + γ2k

2γk/G
,

where we used αi ≥ γ/G. As before, the right-hand side converges to Gγ/2 as
k → ∞, and the algorithm converges in an Gγ/2-suboptimal manner.

Square summable but not summable: let

∥α∥22 =

∞∑
i=1

α2
i < ∞,

∞∑
i=1

αi = ∞.

Then we have:

f
(k)
best − f∗ ≤ R2 +G2∥α∥22

2
∑k

i=1 αi

,

which converges to zero as the numerator is bounded and the denominator goes
to infinity. This gives us convergence to the optimal value.

Infinitesimal but not summable step size: we see that the right-hand side of
inequality (1) converges to zero.
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Let ϵ > 0, there exists an integer N1 such that αi ≤ ϵ/G2 for every i > N1.
Furthermore, there exists an integer N2 such that:

N2∑
i=1

αi ≥
1

ϵ

(
R2 +G2

N1∑
i=1

α2
i

)
,

since
∑∞

i=1 αi = ∞. Let N = max{N1, N2}, then for k > N , we have:

R2 +G2
∑k

i=1 α
2
i

2
∑k

i=1 αi

≤
R2 +G2

∑N1

i=1 α
2
i

2
∑k

i=1 αi

+
G2
∑k

i=N1+1 α
2
i

2
∑N1

i=1 αi + 2
∑k

i=N1+1 αi

≤
R2 +G2

∑N1

i=1 α
2
i

(2/ϵ)(R2 +G2
∑N1

i=1 α
2
i )

+
G2
∑k

i=N1+1(ϵαi/G
2)

2
∑k

i=N1+1 αi

=
ϵ

2
+

ϵ

2
= ϵ.

2.2 Polyak’s Subgradient Method

Polyak’s subgradient method is similar to the basic subgradient method, but
it differs in the choice of step size. In particular, we will analyze the ”exact”
case, where we assume the optimal value of f is known, and compare it to the
approximate case. We will work with the same assumptions and notations as in
Section 2.1.2.

2.2.1 Exact Case with Known f∗

Assuming that the optimal value f∗ is known, the step size is given by:

αk =
f(x(k))− f∗

∥g(k)∥22
.

One reason to choose this αk is as follows. Suppose the ”Taylor expansion”
holds:

f(x(k) − αg(k)) ≈ f(x(k)) + g(k)T (x(k) − αg(k) − x(k)) = f(x(k))− αg(k)T g(k),

where g(k) plays the same role as the gradient in the case of differentiable f .
Substituting f∗ on the left-hand side gives us αk. Another reason, more ana-
lytical, comes from the following inequality:

∥x(k+1) − x∗∥22 ≤ ∥x(k) − x∗∥22 − 2αk(f(x
(k))− f∗) + α2

k∥g(k)∥22,

and it can be observed that with the choice of Polyak’s step, we minimize the
right-hand term.
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Theorem 3 (Convergence Theorem). If x(k) are the iterates of the exact
Polyak’s method, then:

f(x(k)) → f∗, k → ∞.

Proof. To obtain convergence results, we rely on the previous Lemma. In par-
ticular, by substituting the expression of αk into the inequality (2), we have:

2

k∑
i=1

(f(x(i))− f∗)2

∥g(i)∥22
≤ R2 +

k∑
i=1

(f(x(i))− f∗)2

∥g(i)∥22
,

and therefore:

k∑
i=1

(f(x(i))− f∗)2

∥g(i)∥22
≤ R2 ⇐⇒

k∑
i=1

(f(x(i))− f∗)2 ≤ R2G2,

using again that ∥g(i)∥2 ≤ G. Since the series converges, we obtain that
f(x(k)) → f∗, and furthermore, to achieve ϵ-suboptimality, at most (RG/ϵ)2

steps are required.

2.2.2 Approximate Case with an Estimate of f∗

In the case where f∗ is not known, we want to reuse the previous step by

approximating f∗ ≈ f
(k)
best − γk, where γk > 0, γk → 0, and we also assume∑∞

k=1 γk = ∞, resulting in:

αk =
f(x(k))− f

(k)
best + γk

∥g(k)∥22
.

Theorem 4 (Convergence Theorem). Let x(k) be the iterates of the approxi-

mate Polyak’s method and f
(k)
best as above, then:

f
(k)
best → f∗, k → ∞.

Proof. As before, we substitute αi into the inequality (2):

R2 ≥
k∑

i=1

(2αi(f(x
(i))− f∗)− α2

i ∥g(i)∥22)

=

k∑
i=1

2(f(x(i))− f
(i)
best + γi)(f(x

(i))− f∗)− (f(x(i))− f
(i)
best + γi)

2

∥g(i)∥22

=

k∑
i=1

(f(x(i))− f
(i)
best + γi)((f(x

(i))− f∗) + (f
(i)
best − f∗)− γi)

∥g(i)∥22
.
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By contradiction, assume f(x(k)) − f∗ ≥ ϵ > 0. Then for i = 1, ..., k, we have
f(x(i)) − f∗ ≥ ϵ. Let N be such that γi ≤ ϵ for i ≥ N . Then the second term
in the numerator is positive:

(f(x(i))− f∗) + (f
(i)
best − f∗)− γi ≥ ϵ.

Therefore, all terms in the summation for i > N are positive. Let S denote the
summation up to i = N − 1. We have:

k∑
i=N

(f(x(i))− f
(i)
best + γi)((f(x

(i))− f∗) + (f
(i)
best − f∗)− γi)

∥g(i)∥22
≤ R2 − S.

Using the fact that f(x(i))− f
(i)
best + γi ≥ γi and ∥g(i)∥2 ≤ G:

(ϵ/G2)

k∑
i=N

γi ≤ R2 − S.

This leads to a contradiction because the left-hand term tends to infinity as
k → ∞, while the right-hand term is constant in k.

2.3 Projected Subgradient Method

The projected subgradient method is the first method in this discussion that
deals with constrained problems. Specifically, it addresses convex problems of
the form:

min f(x)

x ∈ C,

where C is a closed convex set. The method is given by:

x(k+1) = Π
(
x(k) − αkg

(k)
)
,

where Π is the (Euclidean) projector onto C, and g(k) is any subgradient of f
at x(k). Note that x(k) is always feasible.
Depending on the choice of αk, we have different convergence results.
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Theorem 5 (Convergence Theorem). For the projected subgradient method,
by choosing:

constant step size or constant step length, the algorithm converges in an ϵ-
suboptimal manner, i.e.:

lim
k→∞

f
(k)
best − f∗ < ϵ,

for some ϵ > 0, which decreases with the step size parameter;

square summable step size or non-summable step size or infinitesimal non-
summable step size, we can guarantee convergence to the optimal value:

lim
k→∞

f(x
(k)
best) = f∗.

Remark. The theorem just stated is practically identical to Theorem ?? on
the convergence of the base subgradient method. This is because in the proof,
we will refer to the proof of Theorem ??.

Proof (Theorem 5). Let z(k) = x(k) − αkg
(k), which may not be in C. As in

the proof of the base subgradient method:

∥z(k+1) − x∗∥22 = ∥x(k) − αkg
(k) − x∗∥22

= ∥x(k) − x∗∥22 − 2αkg
(k)T (x(k) − x∗) + α2

k∥g(k)∥22
≤ ∥x(k) − x∗∥22 − 2αk(f(x

(k))− f∗) + α2
k∥g(k)∥22.

The key observation is that when we project a point onto C, we get closer to
every point in C, especially x∗:

∥x(k+1) − x∗∥22 = ∥Π(z(k+1))− x∗∥22 ≤ ∥z(k+1) − x∗∥22.

Combining the two expressions above, we obtain:

∥x(k+1) − x∗∥22 ≤ ∥x(k) − x∗∥22 − 2αk(f(x
(k))− f∗) + α2

k∥g(k)∥22.

This is the starting point of the proof of inequality (??), which allows us to
exactly reduce to the proof in the base case.
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2.4 Subgradient Method for Constrained Problems

In this section, we present a method for constrained problems of the form:

min f0(x)

x ∈ {fi(x) ≤ 0, i = 1, ...,m}, fi convex.

The algorithm we present has the following form:

x(k+1) = x(k) − αkg
(k),

where αk > 0 is the step size and g(k), unlike the previous algorithms, is chosen
as follows:

g(k) ∈

{
∂f0(x

(k)) if fi(x
(k)) ≤ 0 ∀i = 1, ...,m;

∂fj(x
(k)) with fj(x

(k)) > 0.

In particular, if x(k) is feasible, we proceed as if the problem were unconstrained;
otherwise, we choose the direction opposite to the subgradient of one of the
violated constraints.
Often, the iterates will be infeasible, so it will be useful to redefine:

f
(k)
best = min{f0(x(i) | x(i) feasible, i = 1, ..., k}.

(If x(0), ..., x(k) are infeasible, then f
(k)
best = ∞.)

In addition to the assumptions made in Section 2.1.2, we assume the existence
of a Slater point xsf , i.e., a point for which fi(x

sf ) < 0, i = 1, ...,m.
We now prove a convergence result in which the step size is chosen to be in-
finitesimal and non-summable. Similar results can be obtained for other choices
of αk.

Theorem 6 (Convergence Theorem). Let x(k) be the iterates of the method
described above, where we choose αk to be infinitesimal and non-summable.
Then:

f
(k)
best → f∗, k → ∞.

Proof. Suppose, for contradiction, that f
(k)
best ↛ f∗. Then, there exists ϵ > 0

such that f
(k)
best ≥ f∗ + ϵ for every k, which implies f(x(k)) ≥ f∗ + ϵ for every k

for which x(k) is feasible.

Step 1. Find x̃ (not necessarily among the iterates) and µ > 0 such that:

f0(x̃) ≤ f∗ + ϵ/2, f1(x̃) ≤ −µ, ..., fm(x̃) ≤ −µ.

x̃ is ϵ/2-suboptimal and satisfies the constraints with a margin of µ.
We search for x̃ in the segment between x∗ and xsf : x̃ = (1−θ)x∗+θxsf , where
θ ∈ (0, 1). Due to the convexity of f0, we have:

f0(x̃) ≤ (1− θ)f∗ + θf0(x
sf ),
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so by choosing θ = min{1, (ϵ/2)/(f0(xsf )− f∗)}, we have:

f0(x̃) ≤ f∗ + ϵ/2.

Furthermore, by the convexity of fi and the fact that x∗ is feasible, we have:

fi(x̃) ≤ (1− θ)fi(x
∗) + θfi(x

sf ) ≤ θfi(x
sf ),

and we take µ = −θmini fi(x
sf ).

Step 2. Consider i ∈ {1, ..., k} for which x(i) is feasible.

Then we have g(i) ∈ ∂f0(x
(i)) and, by contradiction, f0(x

(i)) ≥ f∗ + ϵ. Since x̃

is ϵ-suboptimal, we have f0(x
(i))− f0(x̃) ≥ ϵ/2 and we obtain:

∥x(i+1) − x̃∥22 = ∥x(i) − x̃∥22 − 2αig
(i)T (x(i) − x̃) + α2

i ∥g(i)∥22
≤ ∥x(i) − x̃∥22 − 2αi(f0(x

(i))− f0(x̃)) + α2
i ∥g(i)∥22

≤ ∥x(i) − x̃∥22 − αiϵ+ α2
i ∥g(i)∥22;

in the second line, we use the definition of subgradient.

Step 2bis. Suppose i ∈ {1, ..., k} for which x(i) is infeasible and g(i) ∈ ∂fp(x
(i)),

with fp(x
(i)) > 0. Since fp(x̃) ≤ −µ, we have fp(x

(i))− fp(x̃) ≥ µ and:

∥x(i+1) − x̃∥22 = ∥x(i) − x̃∥22 − 2αig
(i)T (x(i) − x̃) + α2

i ∥g(i)∥22
≤ ∥x(i) − x̃∥22 − 2αi(fp(x

(i))− fp(x̃)) + α2
i ∥g(i)∥22

≤ ∥x(i) − x̃∥22 − 2αiµ+ α2
i ∥g(i)∥22.

Step 3. By choosing δ = min{ϵ, 2µ} > 0:

∥x(i+1) − x̃∥22 ≤ ∥x(i) − x̃∥22 − αiδ + α2
i ∥g(i)∥22,

and recursively:

∥x(k+1) − x̃∥22 ≤ ∥x(1) − x̃∥22 − δ

k∑
i=1

αi +

k∑
i=1

α2
i ∥g(i)∥22.

It follows that:

δ

k∑
i=1

αi ≤ R2 +G2
k∑

i=1

α2
i ⇐⇒ δ ≤

R2 +G2
∑k

i=1 α
2
i∑k

i=1 αi

but the right-hand side tends to zero as k → ∞. Contradiction.
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