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Definition (Markov influence graph)

Let (S, E) be a directed graph with finite nodes S = {1,...,n} and E C S x S. We can
define a Markov chain on it with a transition matrix P such that:

m for (i,j) € E, P(i,j) > 0 (probability of going from node i to node j);
m for (i,j) ¢ E, P(i,j)=0;
m if there exists i € S for which there is no j € S such that (/,j) € E, we artificially
add the self-loop (i, /) to E.
The triple (S, E, P) is called the Markov influence graph.
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Definition (Ergodic projector)

Let P be the transition matrix, then it can be shown that

=
Np = lim — P".
P Ninoo N Z
n=0
(Np(i,))sxs is called the ergodic projector.

Definition (Deviation matrix)

We define the deviation matrix as:
Dp=(I—P—MNp)~t—Np,

where [ is the identity matrix of the appropriate size.
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Definition (Fundamental matrix)

Zp = Dp + Ip is called the fundamental matrix.

Definition (Drazin inverse)

Let A € K™", then we call the Drazin inverse of A, if it exists, the unique matrix A%
such that:

AAT A = A% A7 AAT = A and AAT = AT A,
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Setting

Properties

Lemma

If A=/ — P, it can be shown! that the following properties hold:

i) A% = (I — P)# and D = A%,
i) Np=1— AA# and N2 = Np (Mp is a projector);

iii) ZpMp = MNp or equivalently Dpllp = 0.

'Nazarathy, Yoni. " Linear Control Theory and Structured Markov Chains.”

Numerical Methods for Markov Chains The Kemeny Constant and the Kemeny Decomposition Algorithm



Example O

Consider a Markov influence graph (S, E, P) where:
m S={1,..,13}
m (i,j) € E if agent i influences agent j;

m P(i,j) measures the weight of the influence of i on j (normalized).
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Example O

Definition (Ergodic class)

A closed and irreducible set of states is called an ergodic class.

Ergodic projector:

Ergodic dass 1

Transient states
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Example O

Definition (Ergodic class)

A closed and irreducible set of states is called an ergodic class.

Ergodic projector:

Ranki influence
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Unichain case (without transient states)

One possible direct distance is given by the matrix M.

Definition (Mean first passage time matrix)

M(i, ) is the average time to first pass from / to j

In the case with a single ergodic class and without transient states, the explicit
expression for M is:

M= (I — Dp+ ee’ - dg(Dp)) - dg(Mp) ",

where e is the vector of all 1's of the appropriate size and dg(Dp) is the matrix that
has Dp as its diagonal and 0 elsewhere.
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Unichain case (without transient states)

Example 0

Ergodic dass 1

Transient states
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Numerical Methods for Markov Chains The Kemeny Constant and the Kemeny Decomposition Algorithm



Unichain case (without transient states)

Definition 1 (Kemeny constant for unichain)

The Kemeny constant for a Markov chain with a single ergodic state and without
transient states is given by:

Kp =Y _ M(i,j)rp(j), Vi €S,
JES

where 7p is the stationary probability vector for P.

m Kp provides the average number of steps required to reach any chosen state
following the distribution given by 7p;

m Kp is constant with respect to the initial state;

m The lower the value of Kp, the better the connectivity of the graph.
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Unichain case (without transient states)

Example 0

2nd ergodic class: Kp = 321.5

m Idea: "Derive” Kp and identify the
critical edges;

m The value of the derivative (defined
later) will be smaller on the edges:
(8,5),(10,5),(5,6) and (5,7);

m By removing these edges, we obtain
the subgraphs:

{4,5} with constant K; = 1.5,

{6,...,11} with constant Ky = 6.2.
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Unichain case (without transient states)

Example 0

'
Transient states

Ergodic dlass 1
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2nd ergodic class: Kp = 321.5

m Idea: "Derive” Kp and identify the
critical edges;

m The value of the derivative (defined
later) will be smaller on the edges:
(8,5),(10,5),(5,6) and (5,7);

m By removing these edges, we obtain
the subgraphs:

{4,5} with constant K; = 1.5,

{6,...,11} with constant Ky = 6.2.

The Kemeny Constant and the Kemeny Decomposition Algorithm



Multichain case

Unichain case (without transient states): Kp = > M(i,j)mp(j), Vi € S.
J€es
To generalize to the multichain case, there may be some critical points:

m Unlike the unichain case, the initial state influences the average number of
definitive visits because once we enter an ergodic class, we do not leave it.

m The matrix M is only significant in the unichain case.
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Multichain case

P 0 0 -+ 0] I, 0 0 - 0
0 P, 0 - 0 0 IL 0 - 0
P= Ip =
0 -~ 0 Pr 0 0 - 0 I O
LPr1v P2 -++ Prg Prrl Ry Ry -+ Rg 0]

where E is the number of ergodic classes, T is the set of transient states (possibly
empty), and I1; is the ergodic projector related to the transition matrix P;.
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Multichain case

‘D, 0 0 - 0]
0 Dp, 0 - 0
Dp =
0 0 Dp 0
|Dp, Dpy -+ Dpy Dpyl

where
Dp.=(—P;+N)t—N; i=1,...Eand Dp. = (I — Pr7)~* because My1 = 0.
Furthermore,

DPT,- = (/ — PTT)il . (PT,. — R,') . (/ — P+ I'I,-)*l - R;.
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Multichain case

(Dp, 0
0 Dp,
Dp =
0 e 0
|Dp,, Dp,

Dp,

0

Dp,, | ,

Definition 2 (Kemeny's constant)

Kp = tr(Dp) + 1

Exploiting the linearity of the trace:

E

Kp = Z Kp, —|—tr(DpTT) —E+1,
i=1

where Kpl. = Z M(k,j)ﬂ'p(_j), Vk € E;.
JEE;
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Graph derivative

For (i,j) € E, let’s consider the transition matrix:
Rj=P —ee/ P+ee=P—ele P—e¢),
and perturb P using Rj;:

P;(0) = (1 —0)P + 6R;, for 6 € (0,1).
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Graph derivative

For all (i,/) € E, we have:

d .. ..
~5 Py = (Dpy0))°Us 1) = (P~ (Dpyo))*) (i )
in matrix form:
d
(Skem| ) =PI - dalP - (De)ee
6=0/ (ij)eE

where e is the vector of all 1's and dg(A) is the matrix A with elements off the
diagonal replaced by 0.
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Graph derivative

If P and P’ are two Markov chains on the same state space S and have the same
ergodic classes, then:

I'IpP’I'Ip:I'Ip and I'IPI'IP/I'IP:I'IP.
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Graph derivative

Proof outline

If P and P’ are two Markov chains on the same state space S and have the same ergodic classes, then:

I'IpP’I'Ip:I'Ip and I'Ipl'lp/l'lp:I'Ip.

m [p(i,) = [amr,!l oz,'27r,12 ) OZ,E’/T;— 0..0];
= Np(i,-)P'Mp = [apmp PiMp, ... aemp PeMp, 0 ... 0];
= Tp P is stochastic and [1p; has all rows equal to 7TP , hence 7p P MNp, = 7rP ;

m it follows that Mp(/,-)P'Mp = Np(i,-).
L]
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Graph derivative

Proof outline

P(0) = (1—0)P +0Q, 0€[0,1].

If P and @ have the same ergodic classes, then:

d
@np(e) = Dpp)(Q — P)Nps) + Nps)(Q — P)Dp(y).
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Graph derivative

Proof outline

d
%np(e) = Dpp)(Q — P)MNp(g) + Mpg)(Q — P)Dp(g)-

Let's define the differential matrix U(A) = (P(0 + A) — P(0))Zp(s)-
The following identity holds?:

FIP(9+A) = Zp(g)(/ = U(A))_lnp(g) aF np(9+A) U(A)

2Schweitzer PJ (1968) Perturbation theory and finite Markov chains
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Graph derivative

Proof outline

d
——=Tp(g) = Dp(g)(Q — P)pe) + Mpe)(Q — P)Dp(o)-
do

From 5T p() = Zpg)(I — U(A))™H(Q — P)p(e) + Mpo+a)(Q — P)Zp(s), using:
Zpg) = Dp(o) + Mp(g) and Mpg)PMp@ey = Mpo) QM pg) = Mp(g),

we obtain: %npw) = Dp(g)(Q — P)np(g) aF np(g)(Q - P)Dp(,g). L]
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Graph derivative

Proof outline

If P and @ have the same ergodic classes:

d
——Dp(g) = Dp(g)(Q — P)Dp(g) — (Dp(9))*(Q — P)pg) — Mp(p)(Q — P)(Dp(g))?
do
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Graph derivative

Proof outline

Conclusion of the proof of the main theorem.

Using the theorems and the definition of Kp):

d d d
—5Kpo) = —5(tr(Dp()) +1) = tr<d9 P(o )) = tf<(Q - P)(DP(G))2)-

In our case, Q = Rjj and Pjj(0) = (I — 0)P + 0R;; :

d
—aPio) = tr((Ru — P)(Dp;(0)) > e (Rij — P)(Dp,(0))’ei

= (—¢ P+ ¢/ )(Dp,0))ei = (Dp,(9))*(s 1) — (P - (Dp,0))*) (i i)
L] L]



Kemeny decomposition algorithm

Hypothesis

d ~ .
1. 1f @KPU(Q)L:O ~ e

m Increasing P(i, ) significantly improves the connectivity of the graph;

m Cutting the edge (/,/) (i.e., setting P(i, ) = 0 and normalizing) divides the graph in
a significant way;

2. Cutting the edges in increasing order with respect to %KPU(G) for each (i,)

leads to a natural decomposition of the network.
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Kemeny decomposition algorithm

FuNncTiON KDA(P,C0_A,C0B,SC):

INPUT:

P = Markov chain transition matrix

CO-A = Condition A Condition Label Specification

CO_B = Condition B

C = True, when edges are simmetrically cut, False otherwise. CO_A CO_A_1({)) Number of times performed <i
CO_A_2(E) Number of ergodic classes in P* is <E

START: CO_B CO_B_1(e) Number of edges cut is <e

CO_B_2(E) Number of ergodic classes in P is <E

e Initialize cut transition matrix P°= P, and set E=FE.
CO_B_3(7) Not all edges with %K(P,‘/(Q)) <q are cut

e While COA:

— For all (i,j) € E, calculate %K(PLZ(G))'

o Figure: Possible conditions for CO_A and CO_B
— While COB:
A Determine (i*,j*) = argming jycx ﬁl\'(Pf} (9))‘67".
A Set PO(i*,j*) =0 and normalize the i* th row of P°. Recommendations from the authors:
A Set E=E\ {('L"]*)}
A If SC = Trues m Large dimensions: CO_A = CO_A_1(1);
* Set P°(j*,i*) =0 and normalize the j*th row of P°.

e E=E\{Un ) m Known ergodic classes: CO_B =
oo CO_B2(E).

e End While

OuTpUT:
P¢ = Decomposed Markov chain transition matrix.
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Applications

Definition (Nearly complete decomposable Markov chain)

A Markov chain P is called nearly complete decomposable if P is irreducible and, up to
permutations, can be written as shown below, where P;;,i =1, ..., k, are square
matrices with rows summing up to 1 — e.

(P11 P2 e Py
Py Py
P=
Py 1y
[Pr1 -+ Prg-1y Pu
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early complete decomposable Markov chain

Courtois matrix

85 0 149 0009 O .00005 0 .00005 Applying KDA(P,C0_A_2(2), CO_B_1(1), FALSE)
1 65 249 0 .0009.00005 0 .00005 1751820832241 0 0 0
1 8 .09% 0003 0 0 .0001 O
175.182.08.322.241 0 0 0
0 0004 0 7 2995 0 .0001 0
pP= 175.182.08.322.241 0 0 0
0005 0 .0004 399 .6 .0001 0 0O
175.182.08.322.241 0 0 0
0 00005 0 0 .00005 .6 .2499 .15 Iy =
00003 0 .00003.00004 O .1 .8 .0999 A75.182.08.322.241 0 0 0
0 00005 0 0 .00005.1999 .25 .55 0 0 0 0 0 .241.556.204
0 0 0 0 0 .241.556.204
with Stationary prObablllty vector: 0 0 0 0 0 .241.556.204

mf = [0.089 0.093 0.04 0.159 0.119 0.12 0.278 0.102|
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Nearly complete decomposable Markov chain

Courtois matrix

.85 0 149 .0009 0 .00005 0O .00005

1 .65 249 0 .0009 .00005 0 .00005

1 8 .0996 .0003 O 0 .0001 O
0 .0004 O 7 2995 0 .0001 O
"= .0005 0 .0004 399 .6 .0001 O 0
0 .00005 O 0 00005 .6 .2499 .15

.00003 0 .00003.00004 O 1 8

0 .00005 0 0

0999

00005 1999 25 55
with stationary probability vector:

mf = [0.089 0.093 0.04 0.159 0.119 0.12 0.278 0.102|
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Applying KDA(P,C0_A_2(3), C0B_1(1), FALSE)

402 417 182 0
402 417 .182 0

402 417 182 0

0

o o o ©

0 0 0 o0
0 0 0 o0
0 0 0 0
0 571429 0 0 O

0 571429 0 0 O

0
0
0

0
0
0

0 .241.556 .204
0 .241.556 204
0 .241 .556 .204




Nearly complete decomposable Markov chain

Applying KDA(P,C0_A_2(3), C0_B_1(1), FALSE):

©e - ©e O
S Sae
After cutting 13 edges After cutting 14 edges

RENELS

= P(4,7) = .0001 > P(1,8) = .00005 but (4,7) is cut first;
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Nearly complete decomposable Markov chain

Applying KDA(P,C0_A_2(3), C0_B_1(1), FALSE):

©= > ©= O ©= (@
S— N
After cutting 13 edges After cutting 14 edges After convergence of KDA

Remark
m P(4,7) =.0001 > P(1,8) = .00005 but (4,7) is cut first;
m KDA(P,C0-A_2(2), COB_1(1), FALSE) = KDA(P,C0_A_1(1), COB_2(2), FALSE);
m KDA(P,C0_A_2(3), CO_B_1(1), FALSE) = KDA(P,C0_A_1(1), C0_B_2(3), FALSE).
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Data Clustering

Consider n data vectors of arbitrary dimension xi, ..., x,. The number of clusters C is unknown.
Let S be the similarity matrix such that: S(i,j) = similarity between x; and x;. Normalizing,
we obtain the transition matrix P.

We use the Gaussian similarity function:

Bl

S(i,j):exp(— 0'2/(5

), foralli,j=1,...,n,

where,

1 O 1
2 _ —— I .
6 >0, 0t = ——7 E_l [Ixi — gl and p=- E_l X;.

§ > 0 is a user-chosen parameter that controls the width o2/ of the neighborhoods of the
data vectors.
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Data Clustering

T g P

Figure: KDA(P, CO_A_1(1), C0B_3(0), TRUE) Applied to Four Different Data Sets
(6 =6.5)
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Data Clustering

AgglomerativeClustering

11.31s]
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Meanshift SpectralClustering
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AffinityPropagation

MiniBatchkMeans
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Conclusions

We have seen how the Kemeny constant and its derivative are good indicators of
network connectivity. In particular, the Kemeny decomposition algorithm is able to
identify the most significant edges in the network dynamics.

KDA has a wide range of applications and in the future, it could be applied to large
real-life networks. In the future, the change in sign of the derivative of the Kemeny
constant could be applied as a natural stopping criterion, and possible relationships
between KDA and DBSCAN could be explored.

Numerical Methods for Markov Chains The Kemeny Constant and the Kemeny Decomposition Algorithm



Thank you for your attention!
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