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Setting

Definition (Markov influence graph)

Let (S,E ) be a directed graph with finite nodes S = {1, ..., n} and E ⊆ S× S. We can
define a Markov chain on it with a transition matrix P such that:

for (i , j) ∈ E , P(i , j) > 0 (probability of going from node i to node j);

for (i , j) /∈ E , P(i , j) = 0;

if there exists i ∈ S for which there is no j ∈ S such that (i , j) ∈ E , we artificially
add the self-loop (i , i) to E .

The triple (S,E ,P) is called the Markov influence graph.
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Setting

Definition (Ergodic projector)

Let P be the transition matrix, then it can be shown that

∃ΠP = lim
N→∞

1

N

N−1∑
n=0

Pn.

(ΠP(i , j))S×S is called the ergodic projector.

Definition (Deviation matrix)

We define the deviation matrix as:

DP = (I − P − ΠP)
−1 − ΠP ,

where I is the identity matrix of the appropriate size.
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Setting

Definition (Fundamental matrix)

ZP = DP +ΠP is called the fundamental matrix.

Definition (Drazin inverse)

Let A ∈ Kn×n, then we call the Drazin inverse of A, if it exists, the unique matrix A#

such that:

AA#A = A#, A#AA# = A and AA# = A#A.
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Setting
Properties

Lemma

If A = I − P, it can be shown1 that the following properties hold:

i) A# = (I − P)# and D = A#;

ii) ΠP = I − AA# and Π2
P = ΠP (ΠP is a projector);

iii) ZPΠP = ΠP or equivalently DPΠP = 0.

1Nazarathy, Yoni. ”Linear Control Theory and Structured Markov Chains.”
Numerical Methods for Markov Chains The Kemeny Constant and the Kemeny Decomposition Algorithm



7/37

Example 0

Consider a Markov influence graph (S,E ,P) where:
S = {1, ..., 13};
(i , j) ∈ E if agent i influences agent j ;

P(i , j) measures the weight of the influence of i on j (normalized).
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Example 0

Definition (Ergodic class)

A closed and irreducible set of states is called an ergodic class.

Ergodic projector:
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Example 0

Definition (Ergodic class)

A closed and irreducible set of states is called an ergodic class.

Ranking by influence

1st ergodic class:
1 ≻ 2 ∼ 3

2nd ergodic class:
6 ∼ 7 ≻ 5 ≻ 4 ≻ 9 ∼ 11 ≻ 8 ∼ 10

Ergodic projector:

Numerical Methods for Markov Chains The Kemeny Constant and the Kemeny Decomposition Algorithm



10/37

Unichain case (without transient states)

One possible direct distance is given by the matrix M.

Definition (Mean first passage time matrix)

M(i , j) is the average time to first pass from i to j

In the case with a single ergodic class and without transient states, the explicit
expression for M is:

M = (I − DP + eeT · dg(DP)) · dg(ΠP)
−1,

where e is the vector of all 1’s of the appropriate size and dg(DP) is the matrix that
has DP as its diagonal and 0 elsewhere.
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Unichain case (without transient states)
Example 0
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Unichain case (without transient states)

Definition 1 (Kemeny constant for unichain)

The Kemeny constant for a Markov chain with a single ergodic state and without
transient states is given by:

KP =
∑
j∈S

M(i , j)πP(j), ∀i ∈ S,

where πP is the stationary probability vector for P.

Remark

KP provides the average number of steps required to reach any chosen state
following the distribution given by πP ;

KP is constant with respect to the initial state;

The lower the value of KP , the better the connectivity of the graph.
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Unichain case (without transient states)
Example 0

2nd ergodic class: KP = 321.5

Idea: ”Derive” KP and identify the
critical edges;

The value of the derivative (defined
later) will be smaller on the edges:
(8, 5), (10, 5), (5, 6) and (5, 7);

By removing these edges, we obtain
the subgraphs:

{4, 5} with constant K1 = 1.5,

{6, ..., 11} with constant K2 = 6.2.
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Multichain case

Unichain case (without transient states): KP =
∑
j∈S

M(i , j)πP(j), ∀i ∈ S.

To generalize to the multichain case, there may be some critical points:

Unlike the unichain case, the initial state influences the average number of
definitive visits because once we enter an ergodic class, we do not leave it.

The matrix M is only significant in the unichain case.
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Multichain case

where E is the number of ergodic classes, T is the set of transient states (possibly
empty), and Πi is the ergodic projector related to the transition matrix Pi .
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Multichain case

,

where

DPi
= (I − Pi +Πi )

−1 − Πi , i = 1, ...,E and DPTT
= (I − PTT )

−1 because ΠTT = 0.

Furthermore,

DPTi
= (I − PTT )

−1 · (PTi
− Ri ) · (I − Pi +Πi )

−1 − Ri .
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Multichain case

,

Definition 2 (Kemeny’s constant)

KP = tr(DP) + 1

Exploiting the linearity of the trace:

KP =
E∑
i=1

KPi
+ tr(DPTT

)− E + 1,

where KPi
=

∑
j∈Ei

M(k , j)πP(j), ∀k ∈ Ei .
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Graph derivative

For (i , j) ∈ E , let’s consider the transition matrix:

Rij = P − eie
T
i P + eiej = P − ei (e

T
i P − ej),

and perturb P using Rij :

Pij(θ) = (1− θ)P + θRij , for θ ∈ (0, 1).
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Graph derivative

Theorem

For all (i , j) ∈ E , we have:

d

dθ
KPij (θ) = (DPij (θ))

2(j , i)− (P · (DPij (θ))
2)(i , i);

in matrix form:(
d

dθ
KPij (θ)

∣∣∣∣
θ=0

)
(i ,j)∈E

= ((DP)
2)T − dg(P · (DP)

2)eeT ,

where e is the vector of all 1’s and dg(A) is the matrix A with elements off the
diagonal replaced by 0.
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Graph derivative

Lemma 1

If P and P ′ are two Markov chains on the same state space S and have the same
ergodic classes, then:

ΠPP
′ΠP = ΠP and ΠPΠP′ΠP = ΠP .
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Graph derivative
Proof outline

Lemma

If P and P′ are two Markov chains on the same state space S and have the same ergodic classes, then:

ΠPP
′ΠP = ΠP and ΠPΠP′ΠP = ΠP .

Proof.

ΠP(i , ·) = [αi1π
T
P1

αi2π
T
P2

... αiEπ
T
PE

0 ... 0];

ΠP(i , ·)P ′ΠP = [αi1π
T
P1
P

′
1ΠP1 ... αiEπ

T
PE

P
′
EΠPE

0 ... 0];

πT
Pj
P

′
j is stochastic and ΠPj

has all rows equal to πT
Pj
, hence πT

Pj
P

′
jΠPj

= πT
Pj
;

it follows that ΠP(i , ·)P ′ΠP = ΠP(i , ·).
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Graph derivative
Proof outline

P(θ) = (1− θ)P + θQ, θ ∈ [0, 1].

Theorem 1

If P and Q have the same ergodic classes, then:

d

dθ
ΠP(θ) = DP(θ)(Q − P)ΠP(θ) +ΠP(θ)(Q − P)DP(θ).
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Graph derivative
Proof outline

Theorem

d

dθ
ΠP(θ) = DP(θ)(Q − P)ΠP(θ) +ΠP(θ)(Q − P)DP(θ).

Proof.

Let’s define the differential matrix U(∆) = (P(θ +∆)− P(θ))ZP(θ).
The following identity holds2:

ΠP(θ+∆) = ZP(θ)(I − U(∆))−1ΠP(θ) +ΠP(θ+∆)U(∆).

2Schweitzer PJ (1968) Perturbation theory and finite Markov chains
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Graph derivative
Proof outline

Theorem

d

dθ
ΠP(θ) = DP(θ)(Q − P)ΠP(θ) +ΠP(θ)(Q − P)DP(θ).

Proof.

From d
dθΠP(θ) = ZP(θ)(I − U(∆))−1(Q − P)ΠP(θ) +ΠP(θ+∆)(Q − P)ZP(θ), using:

ZP(θ) = DP(θ) +ΠP(θ) and ΠP(θ)PΠP(θ) = ΠP(θ)QΠP(θ) = ΠP(θ),

we obtain: d
dθΠP(θ) = DP(θ)(Q − P)ΠP(θ) +ΠP(θ)(Q − P)DP(θ).
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Graph derivative
Proof outline

Theorem 2

If P and Q have the same ergodic classes:

d

dθ
DP(θ) = DP(θ)(Q − P)DP(θ) − (DP(θ))

2(Q − P)ΠP(θ) − ΠP(θ)(Q − P)(DP(θ))
2
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Graph derivative
Proof outline

Conclusion of the proof of the main theorem.

Using the theorems and the definition of KP(θ):

d

dθ
KP(θ) =

d

dθ
(tr(DP(θ)) + 1) = tr

(
d

dθ
DP(θ)

)
= tr

(
(Q − P)(DP(θ))

2

)
.

In our case, Q = Rij and Pij(θ) = (I − θ)P + θRij :

d

dθ
KPij (θ) = tr

(
(Rij − P)(DPij (θ))

2

)
= eTi (Rij − P)(DPij (θ))

2ei

= (−eTi P + eTj )(DPij (θ))
2ei = (DPij (θ))

2(j , i)− (P · (DPij (θ))
2)(i , i)
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Kemeny decomposition algorithm

Hypothesis

1. If d
dθKPij

(θ)
∣∣∣
θ=0

≃ −ϵ:

Increasing P(i , j) significantly improves the connectivity of the graph;

Cutting the edge (i , j) (i.e., setting P(i , j) = 0 and normalizing) divides the graph in
a significant way;

2. Cutting the edges in increasing order with respect to d
dθKPij

(θ)
∣∣∣
θ=0

for each (i , j)

leads to a natural decomposition of the network.
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Kemeny decomposition algorithm

Figure: Possible conditions for CO A and CO B

Recommendations from the authors:

Large dimensions: CO A = CO A 1(1);

Known ergodic classes: CO B =
CO B 2(E ).
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Applications

Definition (Nearly complete decomposable Markov chain)

A Markov chain P is called nearly complete decomposable if P is irreducible and, up to
permutations, can be written as shown below, where Pii , i = 1, ..., k , are square
matrices with rows summing up to 1− ϵ.
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Nearly complete decomposable Markov chain

Courtois matrix

,

with stationary probability vector:

.

Applying KDA(P,CO A 2(2), CO B 1(1), FALSE)
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Nearly complete decomposable Markov chain

Courtois matrix

,

with stationary probability vector:

.

Applying KDA(P,CO A 2(3), CO B 1(1), FALSE)
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Nearly complete decomposable Markov chain

Applying KDA(P,CO A 2(3), CO B 1(1), FALSE):

Remark

P(4, 7) = .0001 > P(1, 8) = .00005 but (4, 7) is cut first;

KDA(P,CO A 2(2), CO B 1(1), FALSE) = KDA(P,CO A 1(1), CO B 2(2), FALSE);

KDA(P,CO A 2(3), CO B 1(1), FALSE) = KDA(P,CO A 1(1), CO B 2(3), FALSE).
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Nearly complete decomposable Markov chain

Applying KDA(P,CO A 2(3), CO B 1(1), FALSE):

Remark

P(4, 7) = .0001 > P(1, 8) = .00005 but (4, 7) is cut first;

KDA(P,CO A 2(2), CO B 1(1), FALSE) = KDA(P,CO A 1(1), CO B 2(2), FALSE);
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Data Clustering

Consider n data vectors of arbitrary dimension x1, ..., xn. The number of clusters C is unknown.
Let S be the similarity matrix such that: S(i , j) = similarity between xi and xj . Normalizing,
we obtain the transition matrix P.
We use the Gaussian similarity function:

S(i , j) = exp
(
− ∥xi − xj∥2

σ2/δ

)
, for all i , j = 1, ..., n,

where,

δ > 0, σ2 =
1

n − 1

n∑
i=1

∥xi − µ∥2 and µ =
1

n

n∑
i=1

xi .

δ > 0 is a user-chosen parameter that controls the width σ2/δ of the neighborhoods of the
data vectors.
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Data Clustering

Figure: KDA(P, CO A 1(1), CO B 3(0), TRUE) Applied to Four Different Data Sets
(δ = 6.5)
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Data Clustering
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Conclusions

We have seen how the Kemeny constant and its derivative are good indicators of
network connectivity. In particular, the Kemeny decomposition algorithm is able to
identify the most significant edges in the network dynamics.
KDA has a wide range of applications and in the future, it could be applied to large
real-life networks. In the future, the change in sign of the derivative of the Kemeny
constant could be applied as a natural stopping criterion, and possible relationships
between KDA and DBSCAN could be explored.
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Thank you for your attention!
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