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The sorted sandpile model
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: graphs

Graphs: finite, undirected, connected, without loops.

Let G = (V,E) be a graph, with

→ V = {0, 1, . . . , n} vertex set,

→ E edge set.

For example: 0

1 2 3

4V = {0, 1, 2, 3, 4}
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .
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Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.
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Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v). 0

1 2 3

4
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Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v).

For example:

c′ := ϕ4(c)
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v).

For example:

c′ := ϕ4(c)

0
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4

−1+1

0 5+1 0+1
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Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v).

For example:

c′ := ϕ4(c)

0
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4
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Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v).

For example:

c′′ := ϕ2(c
′)

0

1 2 3

4

0+1

0+1 6−4 1+1

−2+1c′ :=
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: configurations

Fix a vertex called sink, in our case let it be 0 ∈ V .

A configuration is an element c ∈ Z|V |.

The toppling of vertex v ∈ V is

defined by

ϕv(c) := c−
∑
wv∈E

(w − v).

For example:

c′′ := ϕ2(c
′)

0

1 2 3

4

1

1 2 2

−1c′′ :=
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Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.
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Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.
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Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.
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0
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Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.

A configuration is stable if c(v) < degG(v) for all v ≥ 1.

0

1 2 3

4

1

1 2 2

0

✗
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Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.

A configuration is stable if c(v) < degG(v) for all v ≥ 1.

0

1 2 3

4

1

1 3 0

1
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: sandpiles

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration is non-negative if c(v) ≥ 0 for all v ≥ 1.

A configuration is stable if c(v) < degG(v) for all v ≥ 1.

We ignore the values on the sink 0 ∈ V .

Thus, consider c ∈ ZV \{0}.
0
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that

c ⇝ ϕ0(c) ⇝ ϕσ(1)ϕ0(c) ⇝ . . . ⇝ ϕσ(n) . . . ϕσ(1)ϕ0(c)

are all non-negative configurations.
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

1

1 2 1

0

σ = 0

Configuration: c
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

−2

2 3 1

1

σ = 0

Configuration: ϕ0(c)
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

−1

0 4 1

1

σ = 1

Configuration: ϕ1ϕ0(c)
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

0

1 0 2

2

σ = 1 2

Configuration: ϕ2ϕ1ϕ0(c)
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

0

1 1 0

3

σ = 1 2 3

Configuration: ϕ3ϕ2ϕ1ϕ0(c)
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Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

1

1 2 1

0

σ = 1 2 3 4

Configuration: ϕ4ϕ3ϕ2ϕ1ϕ0(c)
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

For example:

0

1 2 3

4

1

1 2 1

0

σ = 1 2 3 4

Configuration: ϕ4ϕ3ϕ2ϕ1ϕ0(c)

c is recurrent ✓
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: recurrent configurations

Let V = {0, 1, . . . , n} and let 0 be the sink.

A configuration c ∈ ZV \{0} is recurrent if it is stable and there

exist σ ∈ Sn such that c, ϕ0(c), ϕσ(1)ϕ0(c), ϕσ(2)ϕσ(1)ϕ0(c), ...

are all non-negative configurations.

Observe that

ϕσ(n) ◦ · · · ◦ ϕσ(1) ◦ ϕ0(c) = c.

We say c ∈ Rec(G).
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: level statistic

Let G be a graph on V = {0, 1, . . . , n} and c ∈ Rec(G).

We define the level of c as:

level(c) :=

n∑
i=1

c(i)−#{edges non-incident to 0}.

0
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Basic definitions: level statistic

Let G be a graph on V = {0, 1, . . . , n} and c ∈ Rec(G).

We define the level of c as:

level(c) :=

n∑
i=1

c(i)−#{edges non-incident to 0}.

In the example:

level(c) = (1 + 2 + 1 + 0) − 4

= 0

0

1 2 3

4

1
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0
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Sandpile model: some motivation

• Mathematical Physics: self-organized criticality

(Bak-Tang-Wiesenfeld, 1987)

• Geometry: divisors on tropical curves

• Probability: limit configurations for Markov chains on

sandpiles

• Combinatorics:

Theorem

The number of recurrent configurations on a graph G

equals the number of its spanning trees.
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Sandpile model: some motivation

• Mathematical Physics: self-organized criticality

(Bak-Tang-Wiesenfeld, 1987)

• Geometry: divisors on tropical curves

• Probability: limit configurations for Markov chains on

sandpiles

• Combinatorics:

Theorem

The number of recurrent configurations on a graph G

equals the number of its spanning trees.
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

A variation: sorted sandpiles

Consider a graph G on V = {0, 1, . . . , n} and fix sink 0.

Let Γ < Aut(G) be a subgroup of the stabilizer of 0 (the sink).

We define sorted recurrent configurations the elements of

SortRecΓ(G) := Rec(G)⧸Γ.

Theorem

Let Kn+1 be the complete graph on V = {0, 1, . . . , n} and
consider Γ = Sn the stabilizer of 0. Then:

|Rec(Kn+1)| = (n+ 1)n−1

|SortRecΓ(Kn+1)| = Cn := nth-Catalan number.
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A variation: sorted sandpiles

Consider a graph G on V = {0, 1, . . . , n} and fix sink 0.

Let Γ < Aut(G) be a subgroup of the stabilizer of 0 (the sink).

We define sorted recurrent configurations the elements of

SortRecΓ(G) := Rec(G)⧸Γ.

Theorem

Let Kn+1 be the complete graph on V = {0, 1, . . . , n} and
consider Γ = Sn the stabilizer of 0. Then:

|Rec(Kn+1)| = (n+ 1)n−1

|SortRecΓ(Kn+1)| = Cn := nth-Catalan number.
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A variation: sorted sandpiles

Consider a graph G on V = {0, 1, . . . , n} and fix sink 0.

Let Γ < Aut(G) be a subgroup of the stabilizer of 0 (the sink).

We define sorted recurrent configurations the elements of

SortRecΓ(G) := Rec(G)⧸Γ.

Theorem

Let Kn+1 be the complete graph on V = {0, 1, . . . , n} and
consider Γ = Sn the stabilizer of 0. Then:

|Rec(Kn+1)| = (n+ 1)n−1

|SortRecΓ(Kn+1)| = Cn := nth-Catalan number.
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Section 2

...and the Shuffle Theorem
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Catalan numbers: Dyck paths

Catalan numbers are counted by Dyck paths:

Dyck(n) := {Dyck paths of size n}.

It follows that:

Cn =
∑

P∈Dyck(n)

1.
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

q-Catalan numbers: Dyck paths

Catalan numbers are counted by Dyck paths:

Dyck(n) := {Dyck paths of size n}.

It follows that:

Cn(q) =
∑

P∈Dyck(n)

qarea(P )

where in the example:

area(P ) = 8.
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

q,t-Catalan numbers: Dyck paths

Catalan numbers are counted by Dyck paths:

Dyck(n) := {Dyck paths of size n}.

It follows that:

Cn(q, t) =
∑

P∈Dyck(n)

qarea(P )tbounce(P )

where in the example:

area(P ) = 8

bounce(P ) = 9.
0

0

0

1

1

2

2

3
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q,t-Catalan numbers: Dyck paths

Catalan numbers are counted by Dyck paths:

Dyck(n) := {Dyck paths of size n}.

It follows that:

Cn(q, t) =
∑

P∈Dyck(n)

qarea(P )tbounce(P )

where in the example:

area(P ) = 8

bounce(P ) = 9.
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

q,t-Catalan numbers: parking functions

Dyck paths are described by some parking functions:

PFn

(
(n);∅

)
:= {n-labelled Dyck paths with increasing labels}.

In particular for π ∈ PFn((n);∅):

area(P (π)) = area(π)

bounce(P (π)) = pmaj(π) .
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q,t-Catalan numbers: parking functions

Dyck paths are described by some parking functions:

PFn

(
(n);∅

)
:= {n-labelled Dyck paths with increasing labels}.

In particular for π ∈ PFn((n);∅):

area(P (π)) = area(π)

bounce(P (π)) = pmaj(π) .
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

1
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6

7

8
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 0 B = ∅
X = ∅σ0 = 9
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

X = ∅
m = 1
σ0 = 9

B = {1, 2, 3}
1
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 1
σ0 = 9

B = {1, 2, 3}
X = {1, 2, 3}
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 1
σ0 = 9

B = {1, 2, 3}✗
X = {1, 2, 3}
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5
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7

8

3
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

X = {1, 2, 3}
m = 2
σ1 = 3

B = {1, 2}
1
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4
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max(X) X ̸= ∅
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 3
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 4
σ3 = 1
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=
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max(B) X = ∅.

m = 5
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

m = 6
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=
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m = 7
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

Then:

pmaj(π) :=maj(σnσn−1 . . . σ1)
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The pmaj statistic

We compute pmaj using an algorithm. Let B = ∅, σ0 = n+ 1.

For m = 1, 2, . . . , n:

• add labels of column m in B.

• let X = {i ∈ B | i < σm−1}.

• remove from B element

σm :=

max(X) X ̸= ∅

max(B) X = ∅.

Then:

pmaj(π) :=maj(σnσn−1 . . . σ1)
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0 0 0 1 1 2 2 3pmaj(π) = 9 = sum of
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Some milestones: why parking functions?

• 1988: introduction of Macdonald polynomials

• ∼2000: Haglund and Haiman define bounce and dinv for

Dyck paths

• 2003: HHLRU state Shuffle conjecture for ∇en with

parking functions and bistatistic (dinv, area)

• 2004: Loehr-Remmel state Shuffle conjecture for ∇en with

parking functions and bistatistic (area,pmaj)

• 2018: Carlsson-Mellit prove the Shuffle conjecture

For µ, ν compositions, |µ|+ |ν| = n we have:

⟨∇en, eµhν⟩ =
∑

π∈PFn(µ;ν)

qdinv(π)tarea(π) =
∑

π∈PFn(µ;ν)

qarea(π)tpmaj(π)

Alessio Sgubin UniPi
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The connection

• 2014: ADDHL the case µ = ∅ and ν = (k, n− k).

• 2023: DDL the case µ = (k) and ν = (n− k).

• 2024: DDILLV the general case:

Theorem - D’Adderio, Dukes, Iraci, Lazar, Le Borgne, Vander

Wyngaerd (2025)

Consider |µ|+ |ν| = n. Then

⟨∇en, eµhν⟩ =
∑

c∈SortRec(G(µ;ν))

qlevel(c)tdelay(c)

Alessio Sgubin UniPi
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The proof idea: the identities

Show the last identity:

⟨∇en, eµhν⟩
[CM18]
=

∑
π∈PFn(µ;ν)

qdinv(π)tarea(π)

[LR04]
=

∑
π∈PFn(µ;ν)

qarea(π)tpmaj(π)

[DDI+25]
=

∑
c∈SortRec(G(µ;ν))

qlevel(c)tdelay(c)

via a bijection between:

PFn(µ; ν) with (area,pmaj) ←→ SortRec(G(µ; ν)) with (level,delay)

Alessio Sgubin UniPi
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The proof idea: the bijection

Consider µ = (4, 3, 2) and ν = ∅.
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The proof idea: the bijection

Consider µ = (4, 3, 2) and ν = ∅.

Re-order entries in each

subset, decreasingly. 9
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The proof idea: the bijection

Topple the sink, associate a parking function.
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The proof idea: the bijection

Dyck path condition ≡ Recurrent configuration condition
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay

6

3

4

7

5

1

8

9

2

Threshold

6 4

9

8

7

65

4

3

2
1 5

6

8

18

0

11

5

8

S

4

✗

✗

Alessio Sgubin UniPi

Sandpiles and pmaj for ∇ken



The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay
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The proof idea: the delay

pmaj contribute of label λ = # of loops before toppling label λ
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Section 3

A generalization of delay and pmaj
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Our study case

Goal: study the sandpile model on other families of

graphs.

Starting from the family of graphs from [DDI+25], we allow

edges with multeplicities:
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Our study case

Goal: study the sandpile model on other families of

graphs.

Starting from the family of graphs from [DDI+25], we allow

edges with multeplicities:

k = 2

Topple

+1 +2

+1 +2

+1 +2
+1 +2

+1 +1-5 -9
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The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

New sorted sandpile statistics

The definition of (sorted) recurrent configurations is the same.

For V = {0, 1, . . . , n} and c ∈ SortRec(G) the statistics are:

• level: same definition as before

level(c) :=
n∑

i=1
c(i)−#{edges non-incident to the sink}.

• delay: the toppling algorithm must

be changed, when a vertex is

unstable a “slow release” starts.

Alessio Sgubin UniPi
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• level: same definition as before

level(c) :=
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New sorted sandpile statistics

The definition of (sorted) recurrent configurations is the same.

For V = {0, 1, . . . , n} and c ∈ SortRec(G) the statistics are:

• level: same definition as before

level(c) :=
n∑

i=1
c(i)−#{edges non-incident to the sink}.

• delay: the toppling algorithm must

be changed, when a vertex is

unstable a “slow release” starts. S −9
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New sorted sandpile statistics

The definition of (sorted) recurrent configurations is the same.

For V = {0, 1, . . . , n} and c ∈ SortRec(G) the statistics are:

• level: same definition as before

level(c) :=
n∑

i=1
c(i)−#{edges non-incident to the sink}.

• delay: the toppling algorithm must

be changed, when a vertex is

unstable a “slow release” starts.

→ Implementation on [Sgu24]!

S −9

+2

+2

+2
+2

Alessio Sgubin UniPi

Sandpiles and pmaj for ∇ken



The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

Interpretation of ∇ken

Theorem - D’Adderio, Dukes, Iraci, Lazar, Le Borgne, Vander Wyngaerd

(2025)

Let |µ|+ |ν| = n. Then〈
∇en, eµhν

〉
=

∑
c∈SortRec(G(µ;ν))

qlevel(c)tdelay(c).
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Interpretation of ∇ken

Conjecture - D’Adderio, S. (In preparation)

Let |µ|+ |ν| = n and k ≥ 1. Then〈
∇ken, eµhν

〉
=

∑
c∈SortRec(Gk(µ;ν))

qlevel(c)tdelay(c).
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Interpretation of ∇ken

Conjecture - D’Adderio, S. (In preparation)

Let |µ|+ |ν| = n and k ≥ 1. Then〈
∇ken, eµhν

〉
=

∑
c∈SortRec(Gk(µ;ν))

qlevel(c)tdelay(c).

The idea is to follow the same proof of [DDI+25]:

• Mellit proves an interpretation of ⟨∇ken, eµhν⟩ by n× nk

parking functions with (dinv, area).

• No known statistic pmaj for nk × n parking functions.
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New pmaj statistic

The new delay statistic on sandpiles gives an idea for a pmaj on

n× nk parking functions.
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The new delay statistic on sandpiles gives an idea for a pmaj on

n× nk parking functions.
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New pmaj statistic

The new delay statistic on sandpiles gives an idea for a pmaj on

n× nk parking functions.

2
6

3
1

4
5

n = 6

k = 2

B = {1}

6 3 2 6 3 2 1 1• •

Alessio Sgubin UniPi

Sandpiles and pmaj for ∇ken



The sorted sandpile model ...and the Shuffle Theorem A generalization of delay and pmaj

New pmaj statistic

The new delay statistic on sandpiles gives an idea for a pmaj on

n× nk parking functions.
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The new delay statistic on sandpiles gives an idea for a pmaj on
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New pmaj statistic

The new delay statistic on sandpiles gives an idea for a pmaj on

n× nk parking functions.
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The proof

Given the new statistics, we show that:

⟨∇ken, eµhν⟩
Mellit
=

∑
π∈PFn,nk(µ;ν)

qdinv(π)tarea(π)

New
=

∑
π∈PFn,nk(µ;ν)

qarea(π)tpmaj(π)

New
=

∑
c∈SortRec(Gk(µ;ν))

qlevel(c)tdelay(c)

via the following bijections:

PFn,nk(µ; ν) ←→ PFn,nk(µ; ν) ←→ SortRec(Gk(µ; ν))

(dinv, area) (area,pmaj) (level, delay).
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