Operazioni coomologiche stabili e coomologia dei $K(\mathbb{Z}_2, n)$

Cristian Sopio

20 Ottobre 2021

Indice

Operazioni coomologiche e quadrati di Steenrod Operazioni stabili

Quadrati di Steenrod Algebra di Steenrod Esempio: $\mathbb{CP}^n/\mathbb{CP}^{n-2}$ e $S^{2n} \vee S^{2n-2}$

2 Teorema di Serre

Teorema di Borel Caratterizzazione dell'algebra di Steenrod

3 Calcolo della 2-componente del $\pi_4(S^3)$ e del $\pi_5(S^3)$

Richiami

Definizione

Un'operazione coomologica è una trasformazione $\Theta_X : \mathcal{H}^m(X; G) \longrightarrow \mathcal{H}^n(X; H)$ con m, n fissati, per cui, data $f: X \longrightarrow Y$ si ha il diagramma commutativo

$$\mathcal{H}^{m}(Y;G) \xrightarrow{\Theta_{Y}} \mathcal{H}^{n}(Y;H)$$

$$\downarrow_{f^{*}} \qquad \qquad \downarrow_{f^{*}}$$

$$\mathcal{H}^{m}(X;G) \xrightarrow{\Theta_{X}} \mathcal{H}^{n}(X;H)$$

Richiami

Definizione

Un'operazione coomologica è una trasformazione $\Theta_X : \mathcal{H}^m(X; G) \longrightarrow \mathcal{H}^n(X; H)$ con m, n fissati, per cui, data $f : X \longrightarrow Y$ si ha il diagramma commutativo

$$\begin{aligned} \mathcal{H}^{m}(Y;G) &\xrightarrow{\Theta_{Y}} \mathcal{H}^{n}(Y;H) \\ & \downarrow_{f^{*}} & \downarrow_{f^{*}} \\ \mathcal{H}^{m}(X;G) &\xrightarrow{\Theta_{X}} \mathcal{H}^{n}(X;H) \end{aligned}$$

Indichiamo l'insieme di queste operazioni con

 $\mathcal{O}(m, n, G, H).$

Proposizione

Fissati m, n, G, H si ha l'isomorfismo canonico

 $\mathcal{O}(m, n, G, H) \simeq \mathcal{H}^n(K(G, m); H).$

Proposizione

Fissati m, n, G, H si ha l'isomorfismo canonico

$$\mathcal{O}(m, n, G, H) \simeq \mathcal{H}^n(K(G, m); H).$$

Corollario

Dato che K(G, m) è (m - 1)-connesso, le operazioni coomologiche non possono scendere, ovvero $m \ge n$.

Proposizione

Fissati m, n, G, H si ha l'isomorfismo canonico

 $\mathcal{O}(m, n, G, H) \simeq \mathcal{H}^n(K(G, m); H).$

Corollario

Dato che K(G, m) è (m - 1)-connesso, le operazioni coomologiche non possono scendere, ovvero $m \ge n$. Per Hurewicz, se n < m:

 $\mathcal{H}^n(K(G,m);H)=0.$

Operazioni stabili

Definizione

Un'operazione coomologica stabile dalla coomologia a coefficienti in G a coefficienti in H è una successione di operazioni coomologiche $\phi_n \in \mathcal{O}(n, n+q, G, H)$ definite per n = 1, 2, 3, ... etali che per ogni CW-complesso X e per ogni n commuti

$$\begin{aligned} \mathcal{H}^{n}(X;G) & \xrightarrow{\Sigma} & \mathcal{H}^{n+1}(\Sigma X;G) \\ & \downarrow^{\phi_{n}} & \downarrow^{\phi_{n+1}} \\ \mathcal{H}^{n+q}(X;H) & \xrightarrow{\Sigma} & \mathcal{H}^{n+q+1}(\Sigma X;H). \end{aligned}$$

Operazioni coomologiche e quadrati di Steenrod

Operazioni stabili

Caratterizzazione delle stabili

Per il teorema di Brown, possiamo rappresentare $\mathcal{H}^n(X; G)$ come [X, K(G, n)].

Per il teorema di Brown, possiamo rappresentare $\mathcal{H}^n(X; G)$ come $[X, \mathcal{K}(G, n)]$.Usando il loop space e l'aggiunzione con la mappa di sospensione, si ottiene

$$[X, K(G, n)] = [X, \Omega K(G, n+1)] =$$
$$[\Sigma X, K(G, n+1)].$$

Consideriamo un'operazione stabile ϕ che aumenta la dimensione di q.

Consideriamo un'operazione stabile ϕ che aumenta la dimensione di q.

 $\phi_n \in \mathcal{H}^{n+q}(K(G,n),H)$

Consideriamo un'operazione stabile ϕ che aumenta la dimensione di q.

$$\phi_n \in \mathcal{H}^{n+q}(K(G,n),H)$$

1 La condizione che ϕ sia stabile si traduce in

$$f_n(\phi_n) = \phi_{n-1}$$

Consideriamo un'operazione stabile ϕ che aumenta la dimensione di q.

$$\phi_n \in \mathcal{H}^{n+q}(K(G,n),H)$$

1 La condizione che ϕ sia stabile si traduce in

$$f_n(\phi_n) = \phi_{n-1}$$

dove f_n è la composizione

$$\mathcal{H}^{n+q}(K(G,n);H) \xrightarrow{i_n^*} \mathcal{H}^{n+q}(\Sigma K(G,n-1);H)$$
$$\xrightarrow{\Sigma^{-1}} \mathcal{H}^{n+q-1}(K(G,n-1);H).$$

Denotiamo le operazioni stabili che aumentano la dimensione di q con $\mathcal{O}^{S}(q, G, H)$.

Denotiamo le operazioni stabili che aumentano la dimensione di q con $\mathcal{O}^{S}(q, G, H)$.

Proposizione

Le operazioni coomologiche stabili $\mathcal{O}^{S}(q, G, H)$ sono il limite proiettivo della successione

$$\cdots \longrightarrow \mathcal{H}^{q+n}(K(G, n); H) \longrightarrow \mathcal{H}^{q+n-1}(K(G, n-1); H)$$

$$\cdots \longrightarrow \mathcal{H}^{q+1}(K(G,1);H)$$

con le mappe $f_n : \mathcal{H}^{q+n}(K(G,n);H) \longrightarrow \mathcal{H}^{q+n-1}(K(G,n-1);H)$

 $a_{\alpha} + 1_{\alpha} + 1_{\alpha$

Se prendiamo $G = H = \mathbb{Z}_2$ otteniamo una caratterizzazione più forte.

Se prendiamo $G = H = \mathbb{Z}_2$ otteniamo una caratterizzazione più forte.

La mappa

$$f: \Sigma K(\mathbb{Z}_2, n) \longrightarrow K(\mathbb{Z}_2, n+1)$$

Se prendiamo $G = H = \mathbb{Z}_2$ otteniamo una caratterizzazione più forte.

La mappa

$$f: \Sigma K(\mathbb{Z}_2, n) \longrightarrow K(\mathbb{Z}_2, n+1)$$

induce un isomorfismo tra

 $\pi_n(\mathcal{K}(\mathbb{Z}_2, n)) \simeq \pi_{n+1}(\Sigma \mathcal{K}(\mathbb{Z}_2, n)) \simeq \pi_{n+1}(\mathcal{K}(\mathbb{Z}_2, n+1))$

Se prendiamo $G = H = \mathbb{Z}_2$ otteniamo una caratterizzazione più forte.

La mappa

$$f: \Sigma K(\mathbb{Z}_2, n) \longrightarrow K(\mathbb{Z}_2, n+1)$$

induce un isomorfismo tra

$$\pi_n(\mathcal{K}(\mathbb{Z}_2, n)) \simeq \pi_{n+1}(\Sigma \mathcal{K}(\mathbb{Z}_2, n)) \simeq \pi_{n+1}(\mathcal{K}(\mathbb{Z}_2, n+1))$$

Per Freudenthal, $K(\mathbb{Z}_2, n+1) \in \Sigma K(\mathbb{Z}_2, n)$ hanno gruppi di omotopia isomorfi fino a circa 2n e quindi quelli di omologia e coomologia.

Da cui il limite proiettivo

$$\cdots \longrightarrow \mathcal{H}^{q+n+1}(\mathcal{K}(\mathbb{Z}_2, n+1); \mathbb{Z}_2) \longrightarrow \mathcal{H}^{q+n}(\mathcal{K}(\mathbb{Z}_2, n); \mathbb{Z}_2)$$
$$\cdots \longrightarrow \mathcal{H}^{q+1}(\mathcal{K}(\mathbb{Z}_2, 1); \mathbb{Z}_2)$$

Da cui il limite proiettivo

$$\cdots \longrightarrow \mathcal{H}^{q+n+1}(\mathcal{K}(\mathbb{Z}_2, n+1); \mathbb{Z}_2) \longrightarrow \mathcal{H}^{q+n}(\mathcal{K}(\mathbb{Z}_2, n); \mathbb{Z}_2)$$
$$\cdots \longrightarrow \mathcal{H}^{q+1}(\mathcal{K}(\mathbb{Z}_2, 1); \mathbb{Z}_2)$$

stabilizza in tempo finito, e quindi, se $n \ge q+2$ è abbastanza grande

$$\mathcal{O}^{\mathsf{S}}(q,\mathbb{Z}_2,\mathbb{Z}_2)=\mathcal{H}^{n+q}(\mathsf{K}(\mathbb{Z}_2,n),\mathbb{Z}_2).$$

Chiamiamo *quadrati di Steenrod* le operazioni coomologiche stabili che allo stesso tempo siano morfismi additivi

Chiamiamo *quadrati di Steenrod* le operazioni coomologiche stabili che allo stesso tempo siano morfismi additivi

$$Sq^i: \mathcal{H}^n(X; \mathbb{Z}_2) \longrightarrow \mathcal{H}^{n+i}(X; \mathbb{Z}_2)$$

Chiamiamo quadrati di Steenrod le operazioni coomologiche stabili che allo stesso tempo siano morfismi additivi

$$Sq^i: \mathcal{H}^n(X; \mathbb{Z}_2) \longrightarrow \mathcal{H}^{n+i}(X; \mathbb{Z}_2)$$

che soddisfano

$$Sq^{i}(\alpha) = \begin{cases} 0 & \text{se } i > deg(\alpha) \\ \alpha^{2} & \text{se } i = deg(\alpha) \\ \alpha & \text{se } i = 0 \end{cases}$$

Chiamiamo quadrati di Steenrod le operazioni coomologiche stabili che allo stesso tempo siano morfismi additivi

$$Sq^i: \mathcal{H}^n(X; \mathbb{Z}_2) \longrightarrow \mathcal{H}^{n+i}(X; \mathbb{Z}_2)$$

che soddisfano

$$Sq^{i}(\alpha) = egin{cases} 0 & ext{se } i > deg(lpha) \ lpha^{2} & ext{se } i = deg(lpha) \ lpha & ext{se } i = 0 \end{cases}$$

$$Sq^{i}(lphaeta) = \sum_{j} Sq^{j}(lpha)Sq^{i-j}(eta)$$
 (formula di Cartan)

Relazioni di Adém

la composizione di Sq^a e Sq^b , Se a < 2b, soddisfa le relazioni di Adém

à

Relazioni di Adém

la composizione di Sq^a e Sq^b , Se a < 2b, soddisfa le relazioni di Adém

$$Sq^{a}Sq^{b} = \sum_{j} {b-j-1 \choose a-2j} Sq^{a+b-j}Sq^{j}.$$

à

Relazioni di Adém

la composizione di Sq^a e Sq^b , Se a < 2b, soddisfa le relazioni di Adém

$$Sq^{a}Sq^{b} = \sum_{j} {b-j-1 \choose a-2j} Sq^{a+b-j}Sq^{j}.$$

Proposizione

Se i non è una potenza di 2 esiste una relazione

$$Sq^i = \sum_{0 < j < i} a_j Sq^{i-j} Sq^j$$

con coefficienti $a_j \in \mathbb{Z}_2$.

Teorema

I quadrati di Steenrod esistono e sono unici.

Operazioni coomologiche e quadrati di Steenrod Algebr

Algebra di Steenrod

Algebra di Steenrod

Definizione

L'anello $\bigoplus_{q \in \mathbb{N}} \mathcal{O}^{S}(q, \mathbb{Z}_{2}, \mathbb{Z}_{2})$ delle operazioni coomologiche stabili a coefficienti in \mathbb{Z}_{2} , viene detto algebra di Steenrod con l'operazione di composizione, e verrà indicato con \mathcal{A}_{2} .

Invariante più fine della coomologia

Osservazione

 $\mathcal{H}^*(X;\mathbb{Z}_2)$ è un algebra di \mathcal{A}_2 .

Invariante più fine della coomologia

Osservazione

 $\mathcal{H}^*(X;\mathbb{Z}_2)$ è un algebra di \mathcal{A}_2 .

Consideriamo

$$X = \mathbb{CP}^n / \mathbb{CP}^{n-2} \qquad Y = S^{2n} \vee S^{2n-2}.$$

Invariante più fine della coomologia

Osservazione

 $\mathcal{H}^*(X;\mathbb{Z}_2)$ è un algebra di \mathcal{A}_2 .

Consideriamo

$$X = \mathbb{CP}^n / \mathbb{CP}^{n-2} \qquad Y = S^{2n} \vee S^{2n-2}.$$

$$\mathcal{H}^k(X,\mathbb{Z}_2)\simeq \mathcal{H}^k(Y,\mathbb{Z}_2)\simeq egin{cases} \mathbb{Z}_2 & ext{ se } k=0,2n-2,2n \ 0 & ext{ altrimenti} \end{cases}$$

Azione di A_2

Oss: Gli anelli di coomologia sono isomorfi

$$\mathbb{Z}_2^{(0)}\oplus\mathbb{Z}_2^{(2n-2)}\oplus\mathbb{Z}_2^{(2n)}.$$

Azione di A_2

Oss: Gli anelli di coomologia sono isomorfi

$$\mathbb{Z}_2^{(0)} \oplus \mathbb{Z}_2^{(2n-2)} \oplus \mathbb{Z}_2^{(2n)}.$$

Se n è pari i due spazi non sono omotopicamente equivalenti.

Azione di A_2

Oss: Gli anelli di coomologia sono isomorfi

$$\mathbb{Z}_2^{(0)} \oplus \mathbb{Z}_2^{(2n-2)} \oplus \mathbb{Z}_2^{(2n)}.$$

Se n è pari i due spazi non sono omotopicamente equivalenti. Consideriamo

$$Sq^2: \mathcal{H}^{2n-2}(S^{2n} \vee S^{2n-2}; \mathbb{Z}_2) \longrightarrow \mathcal{H}^{2n}(S^{2n} \vee S^{2n-2}; \mathbb{Z}_2)$$

е

$$Sq^2: \mathcal{H}^{2n-2}(\mathbb{CP}^n/\mathbb{CP}^{n-2};\mathbb{Z}_2) \longrightarrow \mathcal{H}^{2n}(\mathbb{CP}^n/\mathbb{CP}^{n-2};\mathbb{Z}_2)$$

Azione di A_2

Essendo i quadrati di Steenrod operazioni coomologiche, sono naturali. Usando

$$S^{2n-2} \sqcup S^{2n} \longrightarrow S^{2n-2} \lor S^{2n}$$

Azione di A_2

Essendo i quadrati di Steenrod operazioni coomologiche, sono naturali. Usando

$$S^{2n-2} \sqcup S^{2n} \longrightarrow S^{2n-2} \vee S^{2n}$$

$$\mathcal{H}^{2n-2}(S^{2n-2} \sqcup S^{2n}; \mathbb{Z}_2) \xrightarrow{Sq^2 \equiv 0} \mathcal{H}^{2n}(S^{2n-2} \sqcup S^{2n}; \mathbb{Z}_2)$$

$$\stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\longrightarrow} \qquad \stackrel{\uparrow}{\longrightarrow} \mathcal{H}^{2n-2}(S^{2n-2} \lor S^{2n}; \mathbb{Z}_2) \xrightarrow{Sq^2} \mathcal{H}^{2n}(S^{2n-2} \lor S^{2n}; \mathbb{Z}_2).$$

Invece, considerando

$$\mathbb{CP}^n \longrightarrow \mathbb{CP}^n / \mathbb{CP}^{n-2}$$

Invece, considerando

$$\mathbb{CP}^n \longrightarrow \mathbb{CP}^n / \mathbb{CP}^{n-2}$$

se x è un generatore di \mathbb{CP}^n , le uniche potenze di x che sopravvivono nel quoziente sono x^{n-1} e x^n .

Invece, considerando

$$\mathbb{CP}^n \longrightarrow \mathbb{CP}^n / \mathbb{CP}^{n-2}$$

se x è un generatore di \mathbb{CP}^n , le uniche potenze di x che sopravvivono nel quoziente sono x^{n-1} e x^n . Per naturalità

$$Sq^{2}: \mathcal{H}^{2n-2}(\mathbb{CP}^{n}/\mathbb{CP}^{n-2}; \mathbb{Z}_{2}) \longrightarrow \mathcal{H}^{2n}(\mathbb{CP}^{n}/\mathbb{CP}^{n-2}; \mathbb{Z}_{2})$$
$$x^{n-1} \longmapsto (n-1)x^{n}$$

Teorema di Serre

Definizione

Data una k-algebra R, degli elementi di R sono un sistema semplice di generatori se i loro prodotti distinti formano una base.

Definizione

Data una k-algebra R, degli elementi di R sono un sistema semplice di generatori se i loro prodotti distinti formano una base.

Teorema

Sia $F \longrightarrow X \longrightarrow B$ una fibrazione con X contrattile e B semplicemente connesso. Supponiamo che $\mathcal{H}^*(F; k)$ a coefficienti in un campo k abbia una base data dai prodotti $a_{i_1}a_{i_2}\cdots a_{i_k}$ degli elementi trasgressivi distinti $a_{i_1} \in \mathcal{H}^*(F; k)$, che hanno dimensione dispari se la caratteristica del campo è diversa da 2. Allora

$$\mathcal{H}^*(B;k)\simeq k[\cdots,b_i,\cdots]$$

dove gli elementi b_i rappresentano le tragressioni $\tau(a_i)$.

Definizioni preliminari

Introduciamo la notazione $Sq^{I} = Sq^{i_1} \cdots Sq^{i_k}$ con I una sequenza di interi non negativi i_1, \ldots, i_k .

Definizioni preliminari

Introduciamo la notazione $Sq^{I} = Sq^{i_1} \cdots Sq^{i_k}$ con I una sequenza di interi non negativi i_1, \ldots, i_k .

Definizione

Una composizione Sq^{l} è detta ammissibile se non ci sono relazioni di Adém da applicarci, ovvero se $i_{j} \ge 2i_{j+1}$ per ogni j = 1, ..., k.

Definizioni preliminari

Introduciamo la notazione $Sq^{I} = Sq^{i_1} \cdots Sq^{i_k}$ con I una sequenza di interi non negativi i_1, \ldots, i_k .

Definizione

Una composizione Sq^{l} è detta ammissibile se non ci sono relazioni di Adém da applicarci, ovvero se $i_{j} \ge 2i_{j+1}$ per ogni j = 1, ..., k.

Definizione

Si dice eccesso di un monomio ammissibile Sq¹, la quantità

$$e(I) = \sum_{j} (i_j - 2i_{j+1}) = i_1 - (i_2 + \ldots + i_k),$$

ovvero quanto Sq¹ eccede dall'essere ammissibile.

Teorema di Serre

Teorema

 $\mathcal{H}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ è l'anello polinomiale $\mathbb{Z}_2[Sq^l(\iota_n)]$ dove ι_n è la classe fondamentale dell' $\mathcal{H}^n(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ ed l varia tra tutte le sequenze ammissibili di eccesso minore stretto di n.

 $\mathcal{H}^*(\mathbb{RP}^\infty,\mathbb{Z}_2)\simeq\mathbb{Z}_2[\iota_1].$

$$\mathcal{H}^*(\mathbb{RP}^\infty,\mathbb{Z}_2)\simeq\mathbb{Z}_2[\iota_1].$$

Per n = 2

$$\mathcal{H}^*(K(\mathbb{Z}_2,2);\mathbb{Z}_2)$$

è l'anello dei polinomi nella successione infinita di generatori $\iota_2, Sq^1(\iota_2), Sq^2Sq^1(\iota_2), \ldots$

$$\mathcal{H}^*(\mathbb{RP}^\infty,\mathbb{Z}_2)\simeq\mathbb{Z}_2[\iota_1].$$

Per n = 2

 $\mathcal{H}^*(K(\mathbb{Z}_2,2);\mathbb{Z}_2)$

è l'anello dei polinomi nella successione infinita di generatori $\iota_2, Sq^1(\iota_2), Sq^2Sq^1(\iota_2), \ldots$ Accade che le potenze 2^j -esime dei generatori di

 $\mathcal{H}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$

passando a $K(\mathbb{Z}_2, n+1)$ shiftano di una dimensione

$$\mathcal{H}^*(\mathbb{RP}^\infty,\mathbb{Z}_2)\simeq\mathbb{Z}_2[\iota_1].$$

Per n = 2

 $\mathcal{H}^*(K(\mathbb{Z}_2,2);\mathbb{Z}_2)$

è l'anello dei polinomi nella successione infinita di generatori $\iota_2, Sq^1(\iota_2), Sq^2Sq^1(\iota_2), \ldots$ Accade che le potenze 2^j -esime dei generatori di

 $\mathcal{H}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$

passando a $K(\mathbb{Z}_2, n+1)$ shiftano di una dimensione e diventano nuovi generatori di

$$\mathcal{H}^*(K(\mathbb{Z}_2, n+1); \mathbb{Z}_2).$$

Infatti, se n = 1 si ha che

 ι_1 $\iota_1^2 = Sq^1(\iota_1)$ $\iota_1^4 = Sq^2Sq^1(\iota_1)$

• • •

Infatti, se n = 1 si ha che

 ι_1 $\iota_1^2 = Sq^1(\iota_1)$ $\iota_1^4 = Sq^2Sq^1(\iota_1)$

• • •

shiftano e diventano

 ι_2 $Sq^1(\iota_2)$ $Sq^2Sq^1(\iota_2)$

. . .

Lemma

1
$$Sq^{I}(\iota_{n}) = 0$$
 se Sq^{I} è ammissibile con $e(I) > n$.

2 Gli elementi $Sq^{I}(\iota_{n})$ con Sq^{I} ammissibile e e(I) = n sono esattamente le potenze di $(Sq^{J}(\iota_{n}))^{2^{j}}$ con J ammissibile e e(J) < n.

Lemma

1
$$Sq^{I}(\iota_{n}) = 0$$
 se Sq^{I} è ammissibile con $e(I) > n$.

2 Gli elementi $Sq^{I}(\iota_{n})$ con Sq^{I} ammissibile e e(I) = n sono esattamente le potenze di $(Sq^{J}(\iota_{n}))^{2^{j}}$ con J ammissibile e e(J) < n.

• Siano
$$I = (i_1, ..., i_n)$$
 e $i_1 = e(I) + i_2 + ... + i_k$. Se $e(I) > n$ si ha

$$i_1>n+i_2+\ldots+i_k=|Sq^{i_2}\cdots Sq^{i_k}(\iota_n)|$$
da cui $Sq^I(\iota_n)=Sq^{i_1}\left(Sq^{i_2}\cdots Sq^{i_n}(\iota_n)
ight)=0.$

$$\implies \text{Se } e(I) = n,$$

$$i_1 = n + i_2 + \ldots + i_k,$$

$$Sq^I(\iota_n) = (Sq^{i_2} \cdots Sq^{i_k}(\iota_n))^2.$$

$$\implies \text{Se } e(I) = n,$$

$$i_1 = n + i_2 + \ldots + i_k,$$

$$Sq^I(\iota_n) = (Sq^{i_2} \cdots Sq^{i_k}(\iota_n))^2.$$
Dato che Sq^I è ammissibile e $i_1 \ge i_2,$

$$e(i_2,\ldots,i_k) \leq e(I) = n$$

$$\implies \text{Se } e(l) = n,$$

$$i_1 = n + i_2 + \ldots + i_k,$$

$$Sq^{l}(\iota_n) = (Sq^{i_2} \cdots Sq^{i_k}(\iota_n))^2.$$
Dato che Sq^{l} è ammissibile e $i_1 \ge i_2,$

$$e(i_2, \ldots, i_k) \le e(l) = n$$
e nel caso sia $e(i_2, \ldots, i_k) = n$ si ripete fino ad ottenere
$$Sq^{l}(\iota_n) = (Sq^{J}(\iota_n))^{2^{j}}$$

 $\operatorname{con} e(J) < n.$

Dimostrazione di Serre

Lemma

Se $y \in \mathcal{H}^*(F; \mathbb{Z}_2)$ è trasgressivo allora è della forma Sqⁱ(x) e

 $\tau(Sq^i(x)) = Sq^i(\tau(x)).$

Dimostrazione di Serre

Lemma

Se $y \in \mathcal{H}^*(F; \mathbb{Z}_2)$ è trasgressivo allora è della forma Sqⁱ(x) e

$$\tau(Sq^i(x)) = Sq^i(\tau(x)).$$

Passo base

$$\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2,1);\mathbb{Z}_2)=\mathcal{H}^*(\mathbb{RP}^\infty;\mathbb{Z}_2)=\mathbb{Z}_2[\iota_1]$$

Dimostrazione di Serre

Lemma

Se $y \in \mathcal{H}^*(F; \mathbb{Z}_2)$ è trasgressivo allora è della forma Sqⁱ(x) e

$$\tau(Sq^i(x)) = Sq^i(\tau(x)).$$

Passo base

$$\mathcal{H}^*(K(\mathbb{Z}_2,1);\mathbb{Z}_2)=\mathcal{H}^*(\mathbb{RP}^\infty;\mathbb{Z}_2)=\mathbb{Z}_2[\iota_1]$$

Usando la fibrazione

$$K(\mathbb{Z}_2,1) \longrightarrow PK(\mathbb{Z}_2,2) \longrightarrow K(\mathbb{Z}_2,2)$$

si ha per $K(\mathbb{Z}_2, 1)$ i generatori

$$\iota_1^{2^i}=Sq^{2^{i-1}}\cdots Sq^2Sq^1(\iota_1).$$

 $\tau(\iota_1) = \iota_2.$

$$\tau(\iota_1) = \iota_2.$$

Per il teorema di Borel si ha che $\mathcal{H}^*(K(\mathbb{Z}_2, 2); \mathbb{Z}_2)$ è l'anello polinomiale su i generatori

$$\tau(Sq^{2^i}\cdots Sq^2Sq^1(\iota_1))=Sq^{2^i}\cdots Sq^2Sq^1(\iota_2).$$

$$\tau(\iota_1)=\iota_2.$$

Per il teorema di Borel si ha che $\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2,2);\mathbb{Z}_2)$ è l'anello polinomiale su i generatori

$$\tau(Sq^{2^i}\cdots Sq^2Sq^1(\iota_1))=Sq^{2^i}\cdots Sq^2Sq^1(\iota_2).$$

Caso generale: se $\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2, n); \mathbb{Z}_2)$ è l'anello polinomiale sulle variabili ammissibili $Sq^I(\iota_n)$ con e(I) < n.

$$\tau(\iota_1)=\iota_2.$$

Per il teorema di Borel si ha che $\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2,2);\mathbb{Z}_2)$ è l'anello polinomiale su i generatori

$$\tau(Sq^{2^i}\cdots Sq^2Sq^1(\iota_1))=Sq^{2^i}\cdots Sq^2Sq^1(\iota_2).$$

Caso generale: se $\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2, n); \mathbb{Z}_2)$ è l'anello polinomiale sulle variabili ammissibili $Sq^I(\iota_n)$ con e(I) < n. Si ha che un sistema semplice di generatori è dato dalle potenze

 2^{j} -esime di $Sq^{I}(\iota_{n})$ con $j = 0, 1, \dots$

Per il lemma, queste potenze sono $Sq^{I}(\iota_{n})$ con $e(I) \leq n$ e questi sono trasgressivi dato che ι_{n} lo è.

Per il lemma, queste potenze sono $Sq^{I}(\iota_{n})$ con $e(I) \leq n$ e questi sono trasgressivi dato che ι_{n} lo è.

à

da cui
$$au(\iota_n) = \iota_{n+1}$$
 e

$$\tau(Sq'(\iota_n))=Sq'(\iota_{n+1}).$$

da cui
$$\tau(\iota_n) = \iota_{n+1}$$
 e

$$\tau(Sq'(\iota_n))=Sq'(\iota_{n+1}).$$

Per il teorema di Borel si ha allora che

$$\mathcal{H}^*(\mathcal{K}(\mathbb{Z}_2, n+1); \mathbb{Z}_2) \simeq \mathbb{Z}_2 \left[\tau(Sq'(\iota_n))
ight]$$

 $\simeq \mathbb{Z}_2 \left[Sq'(\tau(\iota_n))
ight]$
 $\simeq \mathbb{Z}_2 \left[Sq'(\iota_{n+1})
ight]$

Definiamo con \mathcal{A} l'algebra delle operazioni coomologiche a coefficienti in \mathbb{Z}_2 generata dai quadrati di Steenrod.
Definiamo con \mathcal{A} l'algebra delle operazioni coomologiche a coefficienti in \mathbb{Z}_2 generata dai quadrati di Steenrod.

Corollario (Serre)

La mappa

$$\mathcal{A} \longrightarrow \tilde{\mathcal{H}}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$$

che mappa

$$Sq'\mapsto Sq'(\iota_n)$$

con I ammissibile è un isomorfismo tra la parte di grado d di \mathcal{A} e $\mathcal{H}^{n+d}(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ per $d \leq n$.

Definiamo con \mathcal{A} l'algebra delle operazioni coomologiche a coefficienti in \mathbb{Z}_2 generata dai quadrati di Steenrod.

Corollario (Serre)

La mappa

$$\mathcal{A} \longrightarrow \tilde{\mathcal{H}}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$$

che mappa

$$Sq'\mapsto Sq'(\iota_n)$$

con I ammissibile è un isomorfismo tra la parte di grado d di \mathcal{A} e $\mathcal{H}^{n+d}(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ per $d \leq n$.

Infine,

$$\mathcal{A}_2 \simeq \mathcal{A}.$$

• La mappa è surgettiva, perché

$$\tilde{\mathcal{H}}^{d+n}(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$$

per d < n consiste solo nei polinomi lineari negli $Sq^{I}(\iota_{n})$ per il Teorema di Serre.

L'unico termine non lineare per $d = n \ge \iota_n^2 = Sq^n(\iota_n)$.

• La mappa è surgettiva, perché

$$\tilde{\mathcal{H}}^{d+n}(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$$

per d < n consiste solo nei polinomi lineari negli $Sq^{I}(\iota_{n})$ per il Teorema di Serre.

L'unico termine non lineare per $d = n \ge \iota_n^2 = Sq^n(\iota_n)$.

• Per l'iniettività, $d(I) \ge e(I)$ e Sq^n è l'unico con d(I) = e(I) = n.

• La mappa è surgettiva, perché

$$\tilde{\mathcal{H}}^{d+n}(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$$

per d < n consiste solo nei polinomi lineari negli $Sq^{I}(\iota_{n})$ per il Teorema di Serre.

L'unico termine non lineare per $d = n \ge \iota_n^2 = Sq^n(\iota_n)$.

 Per l'iniettività, d(1) ≥ e(1) e Sqⁿ è l'unico con d(1) = e(1) = n. Da cui, gli ammissibili con d(1) ≤ n sono mappati in elementi linearmente indipendenti in

 $\tilde{\mathcal{H}}^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2).$

Algebra di Steenrod

Ricordando che

$$\mathcal{A}_2^q = \mathcal{O}^{\mathcal{S}}(q, \mathbb{Z}_2, \mathbb{Z}_2) \simeq \mathcal{H}^{n+q}(\mathcal{K}(\mathbb{Z}_2, n), \mathbb{Z}_2)$$

per $n \ge q + 2$.

Algebra di Steenrod

Ricordando che

$$\mathcal{A}_2^q = \mathcal{O}^{\mathcal{S}}(q, \mathbb{Z}_2, \mathbb{Z}_2) \simeq \mathcal{H}^{n+q}(\mathcal{K}(\mathbb{Z}_2, n), \mathbb{Z}_2)$$

per $n \ge q+2$. Allora, per il Corollario di Serre, $n \ge q+2 > q$

 $\mathcal{H}^{n+q}(K(\mathbb{Z}_2,n),\mathbb{Z}_2)\simeq \mathcal{A}_q$

Algebra di Steenrod

Ricordando che

$$\mathcal{A}_2^q = \mathcal{O}^{\mathcal{S}}(q, \mathbb{Z}_2, \mathbb{Z}_2) \simeq \mathcal{H}^{n+q}(\mathcal{K}(\mathbb{Z}_2, n), \mathbb{Z}_2)$$

per $n \ge q+2$. Allora, per il Corollario di Serre, $n \ge q+2 > q$

$$\mathcal{H}^{n+q}(K(\mathbb{Z}_2,n),\mathbb{Z}_2)\simeq \mathcal{A}_q$$

Teorema

I quadrati di Steenrod, a meno di relazioni di Adém generano tutte le operazioni coomologiche stabili

Esistono però operazioni non stabili, i.e.

$$x\mapsto x^3$$
,

per $x \in \mathcal{H}^1(X; \mathbb{Z}_2)$.

Esistono però operazioni non stabili, i.e.

$$x \mapsto x^3$$
,

per $x \in \mathcal{H}^1(X; \mathbb{Z}_2)$. Questa corrisponde a $\iota_1^3 \in \mathcal{H}^3(\mathcal{K}(\mathbb{Z}_2, 1); \mathbb{Z}_2)$ che non è ottenibile applicando elementi di \mathcal{A}_2 a ι_1 .

Esistono però operazioni non stabili, i.e.

$$x \mapsto x^3$$
,

per $x \in \mathcal{H}^1(X; \mathbb{Z}_2)$. Questa corrisponde a $\iota_1^3 \in \mathcal{H}^3(\mathcal{K}(\mathbb{Z}_2, 1); \mathbb{Z}_2)$ che non è ottenibile applicando elementi di \mathcal{A}_2 a ι_1 . L'unica possibilità è Sq^2 , ma $Sq^2(\iota_1) = 0$ dato che ι_1 è 1-dimensionale.

Esistono però operazioni non stabili, i.e.

$$x \mapsto x^3$$
,

per $x \in \mathcal{H}^1(X; \mathbb{Z}_2)$. Questa corrisponde a $\iota_1^3 \in \mathcal{H}^3(\mathcal{K}(\mathbb{Z}_2, 1); \mathbb{Z}_2)$ che non è ottenibile applicando elementi di \mathcal{A}_2 a ι_1 . L'unica possibilità è Sq^2 , ma $Sq^2(\iota_1) = 0$ dato che ι_1 è 1-dimensionale.

Ci resta da dire che esiste uno spazio per cui questa operazione non è banale, ma basta osservare che vale per \mathbb{RP}^{∞} .

Teorema

H^{*}(K(ℤ, n); ℤ₂) per n > 1 è l'algebra polinomiale generata dagli Sq^I(ι_n) ammissibili con e(I) < n che non hanno Sq¹-termini

Teorema di C_{ρ} -approssimazione

Teorema

Siano X, A spazi semplicemente connessi con i gruppi di omologia finitamente generati. Sia $f : A \longrightarrow X$ una mappa tale che $f_* : \pi_2(A) \longrightarrow \pi_2(X)$ sia un epimorfismo. Se $f^* : \mathcal{H}^i(X, \mathbb{Z}_p) \longrightarrow \mathcal{H}^i(A, \mathbb{Z}_p)$ è un isomorfismo per i < k e un monomorfismo per i = k, allora

 $\pi_i(A)$ e $\pi_i(X)$ hanno p-compenenti isomorfe per i < k

Teorema di C_p -approssimazione

Teorema

Siano X, A spazi semplicemente connessi con i gruppi di omologia finitamente generati. Sia $f : A \longrightarrow X$ una mappa tale che $f_* : \pi_2(A) \longrightarrow \pi_2(X)$ sia un epimorfismo. Allora le condizioni (1) - (6) sono equivalenti e implicano la condizione (7).

- $f^* : \mathcal{H}^i(X, \mathbb{Z}_p) \longrightarrow \mathcal{H}^i(A, \mathbb{Z}_p)$ è iso per i < k mono per i = k
- $f_* : \mathcal{H}_i(A, \mathbb{Z}_p) \longrightarrow \mathcal{H}_i(X, \mathbb{Z}_p)$ è iso per i < k e epi per i = k
- $\mathcal{H}_i(X, A, \mathbb{Z}_p) = 0 \text{ per } i \leq k$
- $\mathcal{H}_i(X, A, \mathbb{Z}) \in \mathcal{C}_p$ per $i \leq k$
- $\pi_i(X, A) \in \mathcal{C}_p$ per $i \leq k$
- *f*_{*} : π_i(A, ℤ_p) → π_i(X, ℤ_p) è un C_p-isomorfismo per i < k e un C_p-epimorfismo per i = k
- $\pi_i(A) \in \pi_i(X)$ hanno p-compenenti isomorfe per i < k

2-componente: $\pi_4(S^3)$ e $\pi_5(S^3)$

Idea: Procediamo in due step:

 Trovare uno spazio X₁ che approssima S³, meglio di K(ℤ, 3). Ovvero, trovare X₁ per cui esiste λ : S³ → X₁ per cui λ* : Hⁱ(X₁, ℤ₂) → Hⁱ(S³, ℤ₂) sia un isomorfismo per i ≤ 5

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

Idea: Procediamo in due step:

- Trovare uno spazio X_1 che approssima S^3 , meglio di $K(\mathbb{Z},3)$. Ovvero, trovare X_1 per cui esiste $\lambda : S^3 \longrightarrow X_1$ per cui $\lambda^* : \mathcal{H}^i(X_1, \mathbb{Z}_2) \longrightarrow \mathcal{H}^i(S^3, \mathbb{Z}_2)$ sia un isomorfismo per $i \leq 5$
- Provare uno spazio X₂ e una fibrazione F → X₂ → X₁ per cui esiste λ : S³ → X₂ per cui λ^{*} : Hⁱ(X₂, Z₂) → Hⁱ(S³, Z₂) sia un isomorfismo per i ≤ 6 e usare il teorema di C_p-approssimazione per trovare il π₄(S³) e il π₅(S³)

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

 $B = K(\mathbb{Z},3)$

2-componente: $\pi_4(S^3)$ e $\pi_5(S^3)$

$$B = K(\mathbb{Z},3)$$

Sappiamo che

$$\mathcal{H}^*(K(\mathbb{Z},3),\mathbb{Z}_2) \simeq \mathbb{Z}_2[Sq^I(\iota_3)]$$

 $Sq^2(\iota_3): K(\mathbb{Z},3) \longrightarrow K(\mathbb{Z}_2,5),$

2-componente: $\pi_4(S^3)$ e $\pi_5(\overline{S^3})$

$$B = K(\mathbb{Z},3)$$

Sappiamo che

$$\mathcal{H}^*(K(\mathbb{Z},3),\mathbb{Z}_2) \simeq \mathbb{Z}_2[Sq^I(\iota_3)]$$

 $Sq^2(\iota_3): K(\mathbb{Z},3) \longrightarrow K(\mathbb{Z}_2,5),$

possiamo costruire

$$F_{1} = K(\mathbb{Z}_{2}, 4) \qquad K(\mathbb{Z}_{2}, 4)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{1} \longrightarrow PK(\mathbb{Z}_{2}, 5)$$

$$\downarrow \qquad \qquad \downarrow$$

$$B = K(\mathbb{Z}, 3) \xrightarrow{Sq^{2}(\iota_{3})} K(\mathbb{Z}_{2}, 5)$$

40 of 63

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

 $e \in \mathcal{H}^3(S^3,\mathbb{Z})$ la classe fondamentale

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

 $e \in \mathcal{H}^3(S^3,\mathbb{Z})$ la classe fondamentale

 $Sq^2(\iota_3) \circ e \in \mathcal{H}^5(S^3, \mathbb{Z}_2)$

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

 $e \in \mathcal{H}^3(S^3,\mathbb{Z})$ la classe fondamentale

 $Sq^{2}(\iota_{3}) \circ e \in \mathcal{H}^{5}(S^{3},\mathbb{Z}_{2}) \Longrightarrow (PK(\mathbb{Z}_{2},5))^{\star} \simeq S^{3} \times K(\mathbb{Z}_{2},4)$

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

 $e \in \mathcal{H}^3(S^3,\mathbb{Z})$ la classe fondamentale

 $Sq^{2}(\iota_{3}) \circ e \in \mathcal{H}^{5}(S^{3}, \mathbb{Z}_{2}) \Longrightarrow (PK(\mathbb{Z}_{2}, 5))^{\star} \simeq S^{3} \times K(\mathbb{Z}_{2}, 4)$ $e \circ s \colon S^{3} \longrightarrow X_{1}$

2-componente: $\pi_4(S^3)$ **e** $\pi_5(S^3)$

42 of 63

2-componente: $\pi_4(S^3)$ **e** $\pi_5(\overline{S^3})$

Gli elementi di grado \leq 9 che sopravvivono in E_∞ sono

$$\iota_{3}, \qquad Sq^{2}(\iota_{4}), \qquad Sq^{3}(\iota_{4}), \qquad Sq^{2}Sq^{1}(\iota_{4}), \qquad Sq^{3}Sq^{1}(\iota_{4})$$

 $Sq^{4}Sq^{1}(\iota_{4}), \qquad \iota_{3}\otimes Sq^{2}(\iota_{4}).$

2-componente: $\pi_4(S^3)$ e $\pi_5(S^3)$

Ricordando che $E^{p,q}_\infty$ per p+q=n è una decomposizione per $\mathcal{H}^n(X_1,\mathbb{Z}_2)$

2-componente: $\pi_4(S^3)$ e $\pi_5(\overline{S^3})$

Ricordando che $E_{\infty}^{p,q}$ per p+q=n è una decomposizione per $\mathcal{H}^n(X_1,\mathbb{Z}_2)$ denotando gli elementi

$$\iota_3, \qquad i^*(A) = Sq^2(\iota_4),$$

$$i^*(B) = Sq^3(\iota_4), \qquad i^*(C) = Sq^2Sq^1(\iota_4)$$

$$i^*(D) = Sq^3Sq^1(\iota_4), \qquad i^*(E) = Sq^4Sq^1(\iota_4)$$

$$i^*(\iota_3 A) = \iota_3 \otimes Sq^2(\iota_4)$$

2-componente: $\pi_4(S^3)$ e $\pi_5(\overline{S^3})$

Essendo $i^*(A) = Sq^2(\iota_4)$ e $A \in \mathcal{H}^6(X_1, \mathbb{Z}_2)$

2-componente: $\pi_4(S^3)$ e $\pi_5(S^3)$

Essendo $i^*(A) = Sq^2(\iota_4)$ e $A \in \mathcal{H}^6(X_1, \mathbb{Z}_2)$ si ottiene un diagramma

2-componente: $\pi_4(S^3)$ **e** $\pi_5(S^3)$

46 of 63

ð

2-componente: $\pi_4(S^3)$ e $\pi_5(\overline{S^3})$

Gli unici elementi che sopravvivono in E_{∞} con grado \leq 7 sono:

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

Gli unici elementi che sopravvivono in E_{∞} con grado \leq 7 sono:

 ι_3 in dimensione 3,

 $C' = p^*C$ in dimensione 7,

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

Gli unici elementi che sopravvivono in E_{∞} con grado \leq 7 sono:

 ι_3 in dimensione 3,

 $C' = p^*C$ in dimensione 7,

Da cui

$$\mathcal{H}^k(X_2;\mathbb{Z}_2) = egin{cases} \mathbb{Z}_2 & ext{se } k = 0,3 \ 0 & ext{se } k = 1,2,4,5,6 \end{cases}$$

2-componente: $\pi_4(S^3) = \pi_5(S^3)$

Dalla fibrazione $K(\mathbb{Z}_2,4) = F_1 \longrightarrow X_1 \longrightarrow B = K(\mathbb{Z},3)$

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

Dalla fibrazione $K(\mathbb{Z}_2,4) = F_1 \longrightarrow X_1 \longrightarrow B = K(\mathbb{Z},3)$

 $\cdots \longrightarrow \pi_5(K(\mathbb{Z}_2,4)) \longrightarrow \pi_5(X_1) \longrightarrow \pi_5(K(\mathbb{Z},3)) \longrightarrow \pi_4(K(\mathbb{Z}_2,4))$

 $\pi_5(K(\mathbb{Z},3)) \longrightarrow \pi_4(K(\mathbb{Z}_2,4)) \longrightarrow \pi_4(X_1) \longrightarrow \pi_4(K(\mathbb{Z},3)) \longrightarrow \cdots$

2-componente: $\pi_4(S^3) \in \pi_5(S^3)$

Dalla fibrazione $K(\mathbb{Z}_2,4) = F_1 \longrightarrow X_1 \longrightarrow B = K(\mathbb{Z},3)$

 $\cdots \longrightarrow \pi_5(K(\mathbb{Z}_2,4)) \longrightarrow \pi_5(X_1) \longrightarrow \pi_5(K(\mathbb{Z},3)) \longrightarrow \pi_4(K(\mathbb{Z}_2,4))$

$$\pi_5(K(\mathbb{Z},3)) \longrightarrow \pi_4(K(\mathbb{Z}_2,4)) \longrightarrow \pi_4(X_1) \longrightarrow \pi_4(K(\mathbb{Z},3)) \longrightarrow \cdots$$

otteniamo che

$$\pi_4(X_1)\simeq \mathbb{Z}_2 \ \mathrm{e} \ \pi_5(X_1)\simeq 0.$$

Analogamente

$$\cdots \longrightarrow \pi_3(K(\mathbb{Z}_2, 4)) \longrightarrow \pi_3(X_1) \longrightarrow \pi_3(K(\mathbb{Z}, 3)) \longrightarrow \pi_2(K(\mathbb{Z}_2, 4))$$
$$\longrightarrow \pi_2(K(\mathbb{Z}_2, 4)) \longrightarrow \pi_2(X_1) \longrightarrow \pi_2(K(\mathbb{Z}, 3)) \longrightarrow \cdots$$

Analogamente

$$\cdots \longrightarrow \pi_3(K(\mathbb{Z}_2, 4)) \longrightarrow \pi_3(X_1) \longrightarrow \pi_3(K(\mathbb{Z}, 3)) \longrightarrow \pi_2(K(\mathbb{Z}_2, 4))$$
$$\longrightarrow \pi_2(K(\mathbb{Z}_2, 4)) \longrightarrow \pi_2(X_1) \longrightarrow \pi_2(K(\mathbb{Z}, 3)) \longrightarrow \cdots$$

otteniamo che

$$\pi_3(X_1)\simeq \mathbb{Z}$$
 e $\pi_2(X_1)\simeq 0$

е

$$\pi_6(X_1)\simeq 0.$$

Dalla sequenza lunga di fibrazione $F_2 = K(\mathbb{Z}_2, 5) \longrightarrow X_2 \longrightarrow X_1$

Dalla sequenza lunga di fibrazione $F_2 = K(\mathbb{Z}_2, 5) \longrightarrow X_2 \longrightarrow X_1$

$$\rightarrow \pi_{6}(F_{2}) \rightarrow \pi_{6}(X_{2}) \rightarrow \pi_{6}(X_{1}) \rightarrow \pi_{5}(F_{2}) \rightarrow \pi_{5}(X_{2}) \rightarrow \pi_{5}(X_{1})$$

$$\downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\downarrow} \qquad \downarrow^{\downarrow}$$

$$\cdots \longrightarrow \pi_4(F_2) \longrightarrow \pi_4(X_2) \longrightarrow \pi_4(X_1) \longrightarrow \pi_3(F_2) \longrightarrow \cdots$$

$$\downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \downarrow^{\wr} \qquad \cdots \qquad \longrightarrow 0 \longrightarrow \pi_4(X_2) \longrightarrow \mathbb{Z}_2 \longrightarrow 0 \longrightarrow \cdots$$

Calcolo della 2-componente del $\pi_4(S^3)$ e del $\pi_5(S^3)$

2-componente: $\pi_4(S^3) = \pi_5(\overline{S^3})$

Da cui otteniamo i gruppi di omotopia di X_2 , che hanno 2-componente isomorfa a i gruppi di S^3 fino a dimensione 5:

Da cui otteniamo i gruppi di omotopia di X_2 , che hanno 2-componente isomorfa a i gruppi di S^3 fino a dimensione 5:

$$[\pi_4(S^3)]_2 \simeq [\pi_4(X_2)]_2 \simeq \mathbb{Z}_2$$

 $[\pi_5(S^3)]_2 \simeq [\pi_5(X_2)]_2 \simeq \mathbb{Z}_2.$

GRAZIE PER L'ATTENZIONE!

Teorema di Borel

è

Teorema di Borel

Definizione

Data una k-algebra R, degli elementi di R sono un sistema semplice di generatori se i loro prodotti distinti formano una base.

Teorema

Sia $F \longrightarrow X \longrightarrow B$ una fibrazione con X contrattile e B semplicemente connesso. Supponiamo che $\mathcal{H}^*(F; k)$ a coefficienti in un campo k abbia una base data dai prodotti $a_{i_1}a_{i_2}\cdots a_{i_k}$ degli elementi trasgressivi distinti $a_{i_1} \in \mathcal{H}^*(F; k)$, che hanno dimensione dispari se la caratteristica del campo è diversa da 2. Allora

$$\mathcal{H}^*(B;k)\simeq k[\cdots,b_i,\cdots]$$

dove gli elementi b_i rappresentano le tragressioni $\tau(a_i)$.

Calcolo della 2-componente del $\pi_4(S^3)$ e del $\pi_5(S^3)$

Dimostrazione di Borel

Idea: Costruire un modello algebrico che vorremo fosse la successione spettrale di Serre della fibrazione e poi dimostrare che questo modello è isomorfo al nostro.

Teorema

Sia Φ una mappa tra i primi due quadranti di due successioni spettrali di tipo coomologico.

Assumiamo che valga per entrambe

$$E_2^{p,q} = E_2^{p,0} \otimes E_2^{0,q},$$

con i differenziali d_2 che corrispondono con i prodotti tensori di quelli definiti per p e q uguali a zero.

Allora ogni coppia di queste condizioni implica la terza:

- **1** Φ è un isomorfismo dei temini $E_2^{p,0}$.
- **2** Φ è un isomorfismo dei temini $E_2^{0,q}$.
- **3** Φ è un isomorfismo delle pagine E_{∞} .

Il blocco fondamentale per costruire il modello è la SS la cui pagina E_2 sia il prodotto tensore $\Lambda[\bar{x}_i, \bar{y}_i]$ con \bar{x}_i, \bar{y}_i della stessa dimensione di x_i e y_i .

I differenziali non banali, gli unici che possono essere diversi da zero

In particolare, risulterà

$$d_r(\bar{x}_i\otimes \bar{y}_i)=\bar{y}_i^{m+1}$$

per $r = deg(\bar{y}_i)$.

La pagina E_{∞} consisterà solo di un k nella posizione (0,0). Definiamo la pagina E_2 come

$$E_2^{p,q} = E_2^{p,0} \otimes E_2^{0,q}$$

dove la riga di base è

$$k[\ldots,\bar{y}_i,\ldots]$$

e la colonna di sinistra

$$\Lambda_k[\ldots,\bar{x}_i,\ldots].$$

l differenziali verranno costruiti induttivamente, gli \bar{x}_i saranno trasgressivi e $d_r(\bar{x}_i) = \bar{y}_i$.

Con queste condizioni abbiamo già

$$d_2(ar{x}_i) = egin{cases} ar{y}_i & ext{ se deg}(ar{x}_i) = 1 \ 0 & ext{ altrimenti} \end{cases}$$

Per la formula di Kunneth, possiamo ricavarci E_3 , ne risulta che le \bar{x}_i di grado 1 e le \bar{y}_i di grado 2 vanno a 0, mentre le altre rimangono invariate.

La colonna di sinistra rimane l'algebra esterna sui generatori \bar{x}_i rimanenti e la riga in basso l'algebra polinomiale sulle \bar{y}_i rimanenti.

Analogamente,

$$E_3^{p,q} = E_3^{p,0} \otimes E_3^{0,q},$$
$$d_3(\bar{x}_i) = \begin{cases} \bar{y}_i & \text{se deg}(\bar{x}_i) = 2\\ 0 & \text{altrimenti} \end{cases}$$

Fino ad arrivare ad E_{∞} che avrà un singolo k in posizione (0,0).

Denotiamo la successione spettrale di Serre per la fibrazione data con $E_r^{p,q}$ e con $\overline{E}_r^{p,q}$ quella del modello.

Vogliamo definire un isomorfismo $\Phi: \overline{E}_r^{p,q} \longrightarrow E_r^{p,q}$.

Sui termini $\bar{E_2}^{0,q}$ mandiamo un prodotto di generatori distinti \bar{x}_i nel corrispondente prodotto degli x_i ed estendiamo per linearità.

Sulla riga in basso $\overline{E_2}^{p,0}$ sarà l'omomorfismo di anelli che manda \overline{y}_i in y_i , la cui immagine secondo la mappa quoziente $E_2^{p,0} \longrightarrow E_r^{p,0}$ è la trasgressione $\tau(x_i)$ per $r = deg(y_i)$.

Definiamo allora Φ su $E_2^{p,q} = E_2^{p,0} \otimes E_2^{0,q}$ come il prodotto tensore dei valori che assume su $\overline{E_2}^{p,0} \in \overline{E_2}^{0,q}$.

Se k ha caratteristica 2, Φ è solamente un morfismo additivo, infatti $\bar{x}_i^2 = 0$ in quanto appartiene all'algebra esterna, ma non è detto che $x_i^2 = 0$.

Per costruzione, Φ commuta con i differenziali d_2 e quindi induce delle mappe $\bar{E}_3^{p,q} \longrightarrow E_3^{p,q}$; sempre per costruzione commuta anche con i differenziali d_3 , e così via.

Allora, Φ è una mappa di SS. Poiché E è contrattile, Φ è un isomorfismo tra le pagine E_{∞} . L'ipotesi che gli x_i formino un sistema semplice di generatori implica che Φ è un isomorfismo tra $\bar{E}_2^{0,q}$ e $E_2^{0,q}$.

Per come è stato definito, Φ dipende univocamente da i suoi valori sulla prima riga e sulla prima colonna della pagina \overline{E}_2 . Dunque Φ è un isomorfismo di successione spettrali.