Nonlinear solutions to Cauchy's functional equation

Federico Volpe

September 2023

Linear solutions

Functional equations are equations in which a function appears as an unknown.

Cauchy's functional equation is the equation: $f(x+y)=f(x)+f(y)$, where f is a function from \mathbb{R} to itself.

It is trivial to verify that every function of the form $f(x)=c x$ with $c \in \mathbb{R}$ is a valid solution to the functional equation. In fact, a stroger result is true.

Solving over \mathbb{Q}

Theorem

Let f be a solution to Cauchy's functional equation. Then $\left.f\right|_{\mathbb{Q}}$ is a linear function.

Proof sketch: Let $c=f(1)$ and let $\frac{p}{q}$ be a generic rational number. It's easy to show by induction that $q f\left(\frac{p}{q}\right)=f\left(\frac{p}{q}\right)+\ldots+f\left(\frac{p}{q}\right)=$ $f(p)=f(1)+\ldots+f(1)=c p \Rightarrow f\left(\frac{p}{q}\right)=c\left(\frac{p}{q}\right)$, as desired.

\mathbb{R} as a \mathbb{Q}-vector space

These are however not the only solutions to the functional equation if we accept the axiom of choice, which implies the existence of a basis for any vector space.

Viewing \mathbb{R} as a \mathbb{Q}-vector space, we can thus consider a basis B.
With the same reasoning used in the proof of the previous theorem, we can show that for any $b \in B, r \in \mathbb{Q}, f(b r)=r f(b)$.

\mathbb{Q}-linear functions

The aforementioned observation proves that the functions we are looking for are not only additive, but must be linear functions over \mathbb{R} (viewed as a vector space \mathbb{Q}).
In turn, each of these functions will be a solution to Cauchy's equation.

Using basic linear algebra, we can now observe that there's precisely one linear function, and thus one distinct solution to Cauchy's equation, for every choice of $f(B)$ where B is a fixed \mathbb{Q}-basis of \mathbb{R}.

Cardinality of the set of nonlinear solutions

Since for any basis element there are $|\mathbb{R}|$ possible choices, the cardinality of the set of solutions is $|\mathbb{R}|^{|B|}$.

We now observe, using cardinal arithmetic, that $|\mathbb{R}|=\left|\bigcup_{S \in \mathcal{P}_{\text {fin }}(B)} \mathbb{Q}^{|S|}\right|^{1}=\left|\mathcal{P}_{\text {fin }}(B)\right||\mathbb{Q}|=|B||\mathbb{Q}|=$ $\max (|B| ;|\mathbb{Q}|) \Rightarrow|B|=|\mathbb{R}|$

Thus we can conclude that the set of solutions has cardinality $|\mathbb{R}|^{|\mathbb{R}|}=2^{|\mathbb{R}|}>|\mathbb{R}|$, which is the cardinality of the set of the linear ones. So in a sense "most" solutions are nonlinear.

[^0]
Graph of a nonlinear solution

We now prove a remarkable result about the graph of a nonlinear solution.

Theorem

Let f be a nonlinear solution to Cauchy's functional equation and let $G_{f}=\{(x ; f(x)), x \in \mathbb{R}\}$ be its graph. Then G is dense in \mathbb{R}^{2}.

We begin by proving a lemma.

Lemma

Theorem

For any real function f, if G_{f} is dense in \mathbb{R}^{2} so is $G_{f+c x}$
Proof sketch: For any point (X, Y), we can consider find a point of $G_{f},\left(X^{\prime}, f\left(X^{\prime}\right)\right)$ arbitrarily close to $(X, Y-c X)$. Letting ϵ be this distance and using the triangle inequality multiple times we obtain
$\left|(X, Y)-\left(X^{\prime}, f\left(X^{\prime}\right)+c X^{\prime}\right)\right| \leq$
$\left|X-X^{\prime}\right|+\left|Y-c X-f\left(X^{\prime}\right)\right|+\left|c X-c X^{\prime}\right| \leq(c+2) \epsilon$.
Since we can choose ϵ to be arbitrarily small and $\left(X^{\prime}, f\left(X^{\prime}\right)+c X^{\prime}\right) \in G_{f+c x}$, the lemma is proved.

Main proof

Let f be a nonlinear solution to Cauchy's equation. Then by the lemma we just proved it suffices to prove the graph of $g=f-f(1) x$ is dense in \mathbb{R}^{2}.

Since f is nonlinear there is $z \in \mathbb{R}$ such that $g(z)=w \neq 0$.
We then observe that $g(q+r z)=r w$ for any $r, q \in \mathbb{Q}$.

Main proof

Now let (X, Y) be a generic point in \mathbb{R}^{2}, then for any ϵ, since $w \mathbb{Q}$ is dense in \mathbb{R}, we can choose r such that for any $q \in \mathbb{Q}|g(q+r z)-Y| \leq \epsilon$.

Similarly, since $r z+\mathbb{Q}$ is also dense in \mathbb{R}, we can choose a q such that $|q+r z-X| \leq \epsilon$.

We thus found a point $(q+r z, g(q+r z))$ which is arbitrarily close to (X, Y), as desired, and the main result is therefore proven.

Corollaries

This result implies various weaker ones, such that
1 Every nonlinear solution of Cauchy's functional equation is nowhere continuous

2 Every nonlinear solution of Cauchy's functional equation is unbounded on any interval
3 Every nonlinear solution of Cauchy's functional equation is non-monotonic on any interval

[^0]: ${ }^{1}$ The copies of $\mathbb{Q}^{|S|}$ we are considering the union of are to be understood as always distinct from each other

